, Volume 13, Issue 5, pp 1759–1765 | Cite as

Geometry Effect on Plasmon Frequency in Triangular Nanoprism

  • Hajar ZareyiEmail author
  • Majid Vaezzadeh


Surface plasmon resonance is one of the important properties of noble metals which can be controlled by shape, size, and composition. This feature helps scientists to detect individual molecules by surface-enhanced Raman spectroscopy (SERS) especially in sharp shape because of its significant electromagnetic field. For a specific size of particles, the absorption frequency depends on the particle geometry (sharpness behavior). As a consequence, theoretical investigation on geometry is needed for tuning the surface plasmon frequency and its energy. The effect of geometry on the plasmon frequency for individual triangular prism and truncated triangular prism shapes is considered theoretically. A model is proposed to modify the Drude model for describing the plasmon frequency related to the geometry of a truncated nanoprism. Two different phenomena are evaluated. In the first step, the effective area which affected on the density is calculated and compared with experimental data. In the second step, the volume of truncated shape and the angle of each edge are investigated separately, and the influence of those on the surface plasmon frequency is calculated and simulated which have good agreement with experimental data.


Plasmon Surface-enhanced Raman spectroscopy (SERS) Geometry Nobel metals Plasmonics 


  1. 1.
    Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F: Metal Phys 4(7):999–1014. CrossRefGoogle Scholar
  2. 2.
    Huang X, Neretina S, El-Sayed MA (2009) Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 21(48):4880–4910. CrossRefGoogle Scholar
  3. 3.
    Link, S. and M.A. El-Sayed, Spectral properties and relaxation dynamics of surface plasmon electronic oscillations in gold and silver nanodots and nanorods. 1999, ACS PublicationsGoogle Scholar
  4. 4.
    Chan, G.H., Zhao J., Schatz G.C., van Duyne R.P., Localized surface plasmon resonance spectroscopy of triangular aluminum nanoparticles. J Phys Chem C, 2008. 112(36): p. 13958–13963, DOI: CrossRefGoogle Scholar
  5. 5.
    Kelly KL, Coronado E, Zhao LL, Schatz GC (2003) The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J Phys Chem B 107(3):668–677. CrossRefGoogle Scholar
  6. 6.
    Lyon LA, Pena DJ, Natan MJ (1999) Surface plasmon resonance of Au colloid-modified Au films: particle size dependence. J Phys Chem B 103(28):5826–5831. CrossRefGoogle Scholar
  7. 7.
    Mock J et al (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116(15):6755–6759. CrossRefGoogle Scholar
  8. 8.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Haes AJ, Van Duyne RP (2002) A nanoscale optical biosensor: sensitivity and selectivity of an approach based on the localized surface plasmon resonance spectroscopy of triangular silver nanoparticles. J Am Chem Soc 124(35):10596–10604. CrossRefGoogle Scholar
  10. 10.
    Kneipp K, Kneipp H, and Bohr HG (2006) Single-molecule SERS spectroscopy, in Surface-enhanced Raman scattering, Springer. p. 261–277, DOI: CrossRefGoogle Scholar
  11. 11.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1(11):641–648. CrossRefGoogle Scholar
  12. 12.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232. CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Maragò OM, Jones PH, Gucciardi PG, Volpe G, Ferrari AC (2013) Optical trapping and manipulation of nanostructures. Nat Nanotechnol 8(11):807–819. CrossRefPubMedGoogle Scholar
  14. 14.
    Ni X, Emani NK, Kildishev AV, Boltasseva A, Shalaev VM (2012) Broadband light bending with plasmonic nanoantennas. Science 335(6067):427–427. CrossRefPubMedGoogle Scholar
  15. 15.
    Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy DB, Zhang X (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Rep 1(1):175. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Petryayeva E, Krull UJ (2011) Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta 706(1):8–24. CrossRefPubMedGoogle Scholar
  17. 17.
    Roxworthy, B.J., Ko K.D., Kumar A., Fung K.H., Chow E.K.C., Liu G.L., Fang N.X., Toussaint Jr K.C., Application of plasmonic bowtie nanoantenna arrays for optical trapping, stacking, and sorting. Nano Lett, 2012. 12(2): p. 796–801, DOI: CrossRefGoogle Scholar
  18. 18.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204. CrossRefPubMedGoogle Scholar
  19. 19.
    Sharma B, Frontiera RR, Henry AI, Ringe E, van Duyne RP (2012) SERS: materials, applications, and the future. Mater Today 15(1):16–25. CrossRefGoogle Scholar
  20. 20.
    Srituravanich W, Fang N, Sun C, Luo Q, Zhang X (2004) Plasmonic nanolithography. Nano Lett 4(6):1085–1088. CrossRefGoogle Scholar
  21. 21.
    Tiwari VS, Oleg T, Darbha GK, Hardy W, Singh JP, Ray PC (2007) Non-resonance SERS effects of silver colloids with different shapes. Chem Phys Lett 446(1):77–82. CrossRefGoogle Scholar
  22. 22.
    Israelsen ND, Hanson C, Vargis E (2015) Nanoparticle properties and synthesis effects on surface-enhanced Raman scattering enhancement factor: an introduction. Sci World J 2015:1–12. CrossRefGoogle Scholar
  23. 23.
    McLellan JM, Siekkinen A, Chen J, Xia Y (2006) Comparison of the surface-enhanced Raman scattering on sharp and truncated silver nanocubes. Chem Phys Lett 427(1):122–126. CrossRefGoogle Scholar
  24. 24.
    Koh AL, Fernández-Domínguez AI, McComb DW, Maier SA, Yang JKW (2011) High-resolution mapping of electron-beam-excited plasmon modes in lithographically defined gold nanostructures. Nano Lett 11(3):1323–1330. CrossRefPubMedGoogle Scholar
  25. 25.
    Nelayah J, Kociak M, Stéphan O, García de Abajo FJ, Tencé M, Henrard L, Taverna D, Pastoriza-Santos I, Liz-Marzán LM, Colliex C (2007) Mapping surface plasmons on a single metallic nanoparticle. Nat Phys 3(5):348–353. CrossRefGoogle Scholar
  26. 26.
    Markel V et al (1999) Near-field optical spectroscopy of individual surface-plasmon modes in colloid clusters. Phys Rev B 59(16):10903–10909. CrossRefGoogle Scholar
  27. 27.
    Gu L, Sigle W, Koch CT, Ögüt B, van Aken PA, Talebi N, Vogelgesang R, Mu J, Wen X, Mao J (2011) Resonant wedge-plasmon modes in single-crystalline gold nanoplatelets. Phys Rev B 83(19):195433. CrossRefGoogle Scholar
  28. 28.
    Schmidt F-P, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2012) Dark plasmonic breathing modes in silver nanodisks. Nano Lett 12(11):5780–5783. CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Schmidt F-P, Ditlbacher H, Hohenester U, Hohenau A, Hofer F, Krenn JR (2014) Universal dispersion of surface plasmons in flat nanostructures. Nat Commun 5.
  30. 30.
    Millstone JE et al (2009) Colloidal gold and silver triangular nanoprisms. small 5(6):646–664. CrossRefPubMedGoogle Scholar
  31. 31.
    Yao H and Shiratsu T (2016) Multipolar surface magnetoplasmon resonances in triangular silver nanoprisms studied by MCD spectroscopy. J Phys Chem CGoogle Scholar
  32. 32.
    Bastús NG, Piella J, Puntes V (2016) Quantifying the sensitivity of multipolar (dipolar, quadrupolar, and octapolar) surface plasmon resonances in silver nanoparticles: the effect of size, composition, and surface coating. Langmuir 32(1):290–300. CrossRefPubMedGoogle Scholar
  33. 33.
    Ringe E, Langille MR, Sohn K, Zhang J, Huang J, Mirkin CA, van Duyne RP, Marks LD (2012) Plasmon length: a universal parameter to describe size effects in gold nanoparticles. J Phys Chem Lett 3(11):1479–1483. CrossRefPubMedGoogle Scholar
  34. 34.
    Dionne J et al (2005) Planar metal plasmon waveguides: frequency-dependent dispersion, propagation, localization, and loss beyond the free electron model. Phys Rev B 72(7):075405. CrossRefGoogle Scholar
  35. 35.
    Talebi N, Sigle W, Vogelgesang R, Koch CT, Fernández-López C, Liz-Marzán LM, Ögüt B, Rohm M, van Aken PA (2012) Breaking the mode degeneracy of surface plasmon resonances in a triangular system. Langmuir 28(24):8867–8873. CrossRefPubMedGoogle Scholar
  36. 36.
    Hajar Z, Majid V (2016) Self-magnetism of skin effect as a function of nanoparticle diameter on absorption frequency. Plasmonics:1–6Google Scholar
  37. 37.
    Viktor Myroshnychenko, † Jaysen Nelayah,‡, Giorgio Adamo,§ Nicolas Geuquet,∥, I.P.-S. Jessica Rodríguez-Fernandez, ⊥ Kevin F. MacDonald,§ Luc Henrard,∥, and N.I.Z. Luis M. Liz-Marzan, § Mathieu Kociak,‡ and F. Javier García de Abajo (2012) Plasmon spectroscopy and imaging of individual gold nanodecahedra: a combined optical microscopy, cathodoluminescence, and electron energy-loss spectroscopy study. Nano Lett, 12: 9Google Scholar
  38. 38.
    Oughstun KE, Cartwright NA (2003) On the Lorentz-Lorenz formula and the Lorentz model of dielectric dispersion. Opt Express 11(13):1541–1546. CrossRefPubMedGoogle Scholar
  39. 39.
    Mayoral-Astorga L, Gaspar-Armenta J, Ramos-Mendieta F (2016) Surface plasmon transmission through discontinuous conducting surfaces: plasmon amplitude modulation by grazing scattered fields. AIP Adv 6(4):045316. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Faculty of Physics, Department of Solid StateK.N. Toosi University of TechnologyTehranIran

Personalised recommendations