, Volume 13, Issue 5, pp 1695–1698 | Cite as

Investigation on the Optical Transition of Hexagonal Boron Nitride

  • Xiaohu WuEmail author


We study the relationship between the optical transition of hexagonal boron nitride and the direction of its optical axis. The results show that the optical transition can be tunable by adjusting its optical axis; therefore, it provides us an active way to control the optical transition. The reflection and transmission near the optical transition have been investigated and the results show that hexagonal boron nitride can be tuned from good reflector to transmitter or reverse. The results in this paper may help us better understand the optical transition of hexagonal boron nitride.


Hexagonal boron nitride Optical transition Tilted optical axis 


  1. 1.
    Dai S, Fei Z, Ma Q, Rodin AS, Wagner M, McLeod AS, Liu MK, Gannett W, Regan W, Watanabe K, Taniguchi T, Thiemens M, Dominguez G, Castro Neto AH, Zettl A, Keilmann F, Jarillo-Herrero P, Fogler MM, Basov DN (2014) Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343(6175):1125–1129. CrossRefPubMedGoogle Scholar
  2. 2.
    Jacob Z (2014) Hyperbolic phonon–polaritons. Nat Mater 13(12):1081–1083. CrossRefPubMedGoogle Scholar
  3. 3.
    Caldwell JD, Kretinin AV, Chen Y, Giannini V, Fogler MM, Francescato Y, Ellis CT, Tischler JG, Woods CR, Giles AJ, Hong M, Watanabe K, Taniguchi T, Maier SA, Novoselov KS (2014) Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat Commun 5:5221. CrossRefPubMedGoogle Scholar
  4. 4.
    Li P, Lewin M, Kretinin AV, Caldwell JD, Novoselov KS, Taniguchi T, Watanabe K, Gaussmann F, Taubner T (2015) Hyperbolic phonon-polaritons in boron nitride for near-field optical imaging and focusing. Nat Commun 6:7507. CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Song Z, Wang W, Cai G, Liu QH (2017) Investigation of optical spectrum properties of hexagonal boron nitride from metal to dielectric transition. Plasmonics. CrossRefGoogle Scholar
  6. 6.
    Kaipurath RM, Pietrzyk M, Caspani L, Roger T, Clerici M, Rizza C, Ciattoni A, Falco AD, Faccio D (2016) Optically induced metal-todielectric transition in epsilon-near-zero metamaterials. Sci Rep 6(1):27700. CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Davoyan AR, Mahmoud AM, Engheta N (2013) Optical isolation with epsilon-near-zero metamaterials. Opt Express 21(3):3279–3286. CrossRefPubMedGoogle Scholar
  8. 8.
    Zhu W, Si LM, Premaratne M (2013) Light focusing using epsilon-near-zero metamaterials. AIP Adv 3(11):112124. CrossRefGoogle Scholar
  9. 9.
    Kunar A, Low T, Fung KH, Avouris P, Fang NX (2015) Tunable light–matter interaction and the role of hyperbolicity in graphene–hBN system. Nano Lett 15(5):3172–3180. CrossRefGoogle Scholar
  10. 10.
    Fang YT, Zhang YC (2017) Perfect nonreciprocal absorption based on metamaterial slab. Plasmonics. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of EngineeringPeking UniversityBeijingChina

Personalised recommendations