Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1687–1693 | Cite as

Ultrafast Depolarization of Transient Absorption as a Probe of Plasmonicity of Optical Transitions in Ag Nanoclusters

  • Alessandra Paladini
  • Daniele Catone
  • Patrick O’Keeffe
  • Francesco Toschi
  • Lorenza Suber
Article
  • 164 Downloads

Abstract

Time-resolved polarization-dependent transient absorption has been used to study the plasmonicity of the optical transitions of Ag nanoparticles and nanoclusters. The lack of a measureable polarization anisotropy in the nanoparticles is indicative of the ultrafast electron-electron scattering while the anisotropy with a depolarization timescale of 500 fs observed in the nanoclusters indicates the excitation of a non-plasmonic state. The short lifetime of the anisotropy is a measure of electronic coupling between nearly degenerate states and is thus proposed as a sensitive measurement of the plasmonic content of the optical transitions of nanoclusters.

Keywords

Nanocluster Plasmon Transient absorption Time-resolved polarization anisotropy 

Notes

Funding Information

DC and PO’K acknowledge funding from PRIN project no. 2015CL3APH.

References

  1. 1.
    Bakr O, Amendola V, Aikens C, Wenseleers W, Li R, DalNegro L, Schatz G, Stellacci F (2009) Silver nanoparticles with broad multiband linear optical absorption. Angew Chem 121(32):6035–6040.  https://doi.org/10.1002/ange.200900298 CrossRefGoogle Scholar
  2. 2.
    Zheng K, Yuan X, Goswami N, Zhang Q, Xie J (2014) Recent advances in the synthesis, characterization, and biomedical applications of ultrasmall thiolated silver nanoclusters. RSC Adv 4(105):60581–60596.  https://doi.org/10.1039/C4RA12054J CrossRefGoogle Scholar
  3. 3.
    Jin R, Zeng C, Zhou M, Chen Y (2016) Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem Rev 116(18):10346–10413.  https://doi.org/10.1021/acs.chemrev.5b00703 CrossRefGoogle Scholar
  4. 4.
    Chakraborty I, Pradeep T Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem Rev.  https://doi.org/10.1021/acs.chemrev.6b00769 CrossRefGoogle Scholar
  5. 5.
    Choi S, Dickson RM, Yu J (2012) Developing luminescent silver nanodots for biological applications. Chem Soc Rev 41(5):1867–1891.  https://doi.org/10.1039/C1CS15226B CrossRefGoogle Scholar
  6. 6.
    Chen Y-S, Choi H, Kamat PV (2013) Metal-cluster-sensitized solar cells. A new class of thiolated gold sensitizers delivering efficiency greater than 2%. J Am Chem Soc 135(24):8822–8825.  https://doi.org/10.1021/ja403807f CrossRefGoogle Scholar
  7. 7.
    Fang J, Zhang B, Yao Q, Yang Y, Xie J, Yan N (2016) Recent advances in the synthesis and catalytic applications of ligand-protected, atomically precise metal nanoclusters. Coord Chem Rev 322:1–29.  https://doi.org/10.1016/j.ccr.2016.05.003. http://www.sciencedirect.com/science/article/pii/S0010854516300066 CrossRefGoogle Scholar
  8. 8.
    Yuan X, Luo Z, Yu Y, Yao Q, Xie J (2013) Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem Asian J 8(5):858–871.  https://doi.org/10.1002/asia.201201236 CrossRefGoogle Scholar
  9. 9.
    Desireddy A, Conn BE, Guo J, Yoon B, Barnett RN, Monahan BM, Kirschbaum K, Griffith WP, Whetten RL, Landman U, Bigioni TP (2013) Ultrastable silver nanoparticles. Nature 501(7467):399–402.  https://doi.org/10.1038/nature12523 CrossRefPubMedGoogle Scholar
  10. 10.
    Conn BE, Desireddy A, Atnagulov A, Wickramasinghe S, Bhattarai B, Yoon B, Barnett RN, Abdollahian Y, Kim YW, Griffith WP, Oliver SRJ, Landman U, Bigioni TP (2015) M4Ag44 (p-MBA)30 molecular nanoparticles. J Phys Chem C 119(20): 11238–11249.  https://doi.org/10.1021/jp512237b CrossRefGoogle Scholar
  11. 11.
    Zheng J, Zhou C, Yu M, Liu J (2012) Different sized luminescent gold nanoparticles. Nanoscale 4 (14):4073–4083.  https://doi.org/10.1039/C2NR31192E CrossRefGoogle Scholar
  12. 12.
    Devadas MS, Kim J, Sinn E, Lee D, Goodson T, Ramakrishna G (2010) Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J Phys Chem C 114(51):22417–22423.  https://doi.org/10.1021/jp107033n CrossRefGoogle Scholar
  13. 13.
    Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD (2007) Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318(5849):430–433.  https://doi.org/10.1126/science.1148624 CrossRefGoogle Scholar
  14. 14.
    Udayabhaskararao T, Pradeep T (2013) New protocols for the synthesis of stable Ag and Au nanocluster molecules. J Phys Chem Lett 4(9):1553–1564.  https://doi.org/10.1021/jz400332g CrossRefGoogle Scholar
  15. 15.
    Aikens CM (2008) Origin of discrete optical absorption spectra of M25(SH)18 nanoparticles (M = Au, Ag). J Phys Chem C 112(50):19797–19800.  https://doi.org/10.1021/jp8090914 CrossRefGoogle Scholar
  16. 16.
    Yang H, Wang Y, Huang H, Gell L, Lehtovaara L, Malola S, Häkkinen H, Zheng N (2013) All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures. Nat Commun 4:2422 EP.  https://doi.org/10.1038/ncomms3422 CrossRefGoogle Scholar
  17. 17.
    Day PN, Pachter R, Nguyen KA, Bigioni TP (2016) Linear and nonlinear optical response in silver nanoclusters: insight from a computational investigation. J Phys Chem A 120(4):507–518.  https://doi.org/10.1021/acs.jpca.5b09623. PMID: 26730764CrossRefGoogle Scholar
  18. 18.
    Yang H, Wang Y, Chen X, Zhao X, Gu L, Huang H, Yan J, Xu C, Li G, Wu J, Edwards AJ, Dittrich B, Tang Z, Wang D, Lehtovaara L, Häkkinen H, Zheng N (2016) Plasmonic twinned silver nanoparticles with molecular precision. Nat Commun 7:12809 EP.  https://doi.org/10.1038/ncomms12809 CrossRefGoogle Scholar
  19. 19.
    Yau SH, Ashenfelter BA, Desireddy A, Ashwell AP, Varnavski O, Schatz GC, Bigioni TP, Goodson T (2017) Optical properties and structural relationships of the silver nanoclusters Ag32(SG)19 and Ag15(SG)11. J Phys Chem C 121(2):1349–1361.  https://doi.org/10.1021/acs.jpcc.6b10434 CrossRefGoogle Scholar
  20. 20.
    Link S, El-Sayed MA, Schaaff TG, Whetten RL (2002) Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster. Chem Phys Lett 356(3-4):240–246.  https://doi.org/10.1016/S0009-2614(02)00306-8. http://www.sciencedirect.com/science/article/pii/S0009261402003068 CrossRefGoogle Scholar
  21. 21.
    Miller SA, Womick JM, Parker JF, Murray RW, Moran AM (2009) Femtosecond relaxation dynamics of Au25 L 18 monolayer-protected clusters. J Phys Chem C 113 (22):9440–9444.  https://doi.org/10.1021/jp9025046 CrossRefGoogle Scholar
  22. 22.
    Qian H, Sfeir MY, Jin R (2010) Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: effects of charge state. J Phys Chem C 114(47):19935–19940.  https://doi.org/10.1021/jp107915x CrossRefGoogle Scholar
  23. 23.
    Yi C, Tofanelli MA, Ackerson CJ, Knappenberger KL (2013) Optical properties and electronic energy relaxation of metallic Au144(SR)60 nanoclusters. J Am Chem Soc 135(48):18222–18228.  https://doi.org/10.1021/ja409998j CrossRefGoogle Scholar
  24. 24.
    Green TD, Knappenberger KL (2012) Relaxation dynamics of Au25 L 18 nanoclusters studied by femtosecond time-resolved near infrared transient absorption spectroscopy. Nanoscale 4 (14):4111–4118.  https://doi.org/10.1039/C2NR31080E CrossRefGoogle Scholar
  25. 25.
    Yau SH, Varnavski O, Goodson T (2013) An ultrafast look at Au nanoclusters. Acc Chem Res 46 (7):1506–1516.  https://doi.org/10.1021/ar300280w CrossRefGoogle Scholar
  26. 26.
    Mustalahti S, Myllyperkiö P, Lahtinen T, Salorinne K, Malola S, Koivisto J, Häkkinen H, Pettersson M (2014) Ultrafast electronic relaxation and vibrational cooling dynamics of Au144(SC2 H 4Ph)60 nanocluster probed by transient mid-ir spectroscopy. J Phys Chem C 118 (31):18233–18239.  https://doi.org/10.1021/jp505464z CrossRefGoogle Scholar
  27. 27.
    Stamplecoskie KG, Kamat PV (2014) Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J Am Chem Soc 136(31):11093–11099.  https://doi.org/10.1021/ja505361n CrossRefGoogle Scholar
  28. 28.
    Zhou M, Zhong J, Wang S, Guo Q, Zhu M, Pei Y, Xia A (2015) Ultrafast relaxation dynamics of luminescent rod-shaped, silver-doped AgxAu25−x clusters. J Phys Chem C 119(32):18790–18797.  https://doi.org/10.1021/acs.jpcc.5b05376 CrossRefGoogle Scholar
  29. 29.
    Yi C, Zheng H, Tvedte LM, Ackerson CJ, Knappenberger KL (2015) Nanometals: identifying the onset of metallic relaxation dynamics in monolayer-protected gold clusters using femtosecond spectroscopy. J Phys Chem C 119(11):6307–6313.  https://doi.org/10.1021/jp512112z CrossRefGoogle Scholar
  30. 30.
    Stoll T, Sgrò E, Jarrett JW, Réhault J, Oriana A, Sala L, Branchi F, Cerullo G, Knappenberger KL (2016) Superatom state-resolved dynamics of the Au25(SC8 H 9)18 cluster from two-dimensional electronic spectroscopy. J Am Chem Soc 138 (6):1788–1791.  https://doi.org/10.1021/jacs.5b12621 CrossRefGoogle Scholar
  31. 31.
    Philip R, Chantharasupawong P, Qian H, Jin R, Thomas J (2012) Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett 12(9):4661–4667.  https://doi.org/10.1021/nl301988v CrossRefGoogle Scholar
  32. 32.
    Malola S, Lehtovaara L, Enkovaara J, Häkkinen H (2013) Birth of the localized surface plasmon resonance in monolayer-protected gold nanoclusters. ACS Nano 7(11):10263–10270.  https://doi.org/10.1021/nn4046634 CrossRefGoogle Scholar
  33. 33.
    Zhou M, Zeng C, Chen Y, Zhao S, Sfeir MY, Zhu M, Jin R (2016) Evolution from the plasmon to exciton state in ligand-protected atomically precise gold nanoparticles. Nat Commun 7:13240 EP.  https://doi.org/10.1038/ncomms13240 CrossRefGoogle Scholar
  34. 34.
    Scholl JA, Koh AL, Dionne JA (2012) Quantum plasmon resonances of individual metallic nanoparticles. Nature 483(7390): 421–427.  https://doi.org/10.1038/nature10904 CrossRefGoogle Scholar
  35. 35.
    Chakraborty I, Erusappan J, Govindarajan A, Sugi KS, Udayabhaskararao T, Ghosh A, Pradeep T (2014) Emergence of metallicity in silver clusters in the 150 atom regime: a study of differently sized silver clusters. Nanoscale 6(14):8024–8031.  https://doi.org/10.1039/C4NR00679H CrossRefGoogle Scholar
  36. 36.
    Lunskens T, Heister P, Thamer M, Walenta CA, Kartouzian A, Heiz U (2015) Plasmons in supported size-selected silver nanoclusters. Phys Chem Chem Phys 17(21):17541–17544.  https://doi.org/10.1039/C5CP01582K  https://doi.org/10.1039/C5CP01582K CrossRefGoogle Scholar
  37. 37.
    Piccini G, Havenith RWA, Broer R, Stener M (2013) Gold nanowires: a time-dependent density functional assessment of plasmonic behavior. J Phys Chem C 117(33):17196–17204.  https://doi.org/10.1021/jp405769e CrossRefGoogle Scholar
  38. 38.
    Guidez EB, Aikens CM (2014) Quantum mechanical origin of the plasmon: from molecular systems to nanoparticles. Nanoscale 6(20):11512–11527.  https://doi.org/10.1039/C4NR02225D CrossRefGoogle Scholar
  39. 39.
    Ma J, Wang Z, Wang L-W (2015) Interplay between plasmon and single-particle excitations in a metal nanocluster. Nat Commun 6:10107 EP.  https://doi.org/10.1038/ncomms10107 CrossRefGoogle Scholar
  40. 40.
    Titantah JT, Karttunen M (2016) Ab initio calculations of optical properties of silver clusters: cross-over from molecular to nanoscale behavior. Eur Phys J B 89(5):125.  https://doi.org/10.1140/epjb/e2016-70065-y CrossRefGoogle Scholar
  41. 41.
    Bursi L, Calzolari A, Corni S, Molinari E (2016) Quantifying the plasmonic character of optical excitations in nanostructures. ACS Photonics 3(4):520–525.  https://doi.org/10.1021/acsphotonics.5b00688 CrossRefGoogle Scholar
  42. 42.
    Zhang R, Bursi L, Cox JD, Cui Y, Krauter CM, Alabastri A, Manjavacas A, Calzolari A, Corni S, Molinari E, Carter EA, García de Abajo FJ, Zhang H, Nordlander P How to identify plasmons from the optical response of nanostructures. ACS Nano.  https://doi.org/10.1021/acsnano.7b03421 CrossRefGoogle Scholar
  43. 43.
    Hartland GV (2011) Optical studies of dynamics in noble metal nanostructures. Chem Rev 111(6):3858–3887.  https://doi.org/10.1021/cr1002547 CrossRefGoogle Scholar
  44. 44.
    Li J, Cushing SK, Meng F, Senty TR, Bristow AD, Wu N (2015) Plasmon-induced resonance energy transfer for solar energy conversion. Nat Photon 9(9):601–607.  https://doi.org/10.1038/nphoton.2015.142 CrossRefGoogle Scholar
  45. 45.
    Weast RC (ed) (1982) CRC Handbook of Chemistry and Physics. CRC Press, Boca RatonGoogle Scholar
  46. 46.
    Lorenc M, Ziolek M, Naskrecki R, Karolczak J, Kubicki J, Maciejewski A (2002) Artifacts in femtosecond transient absorption spectroscopy. Appl Phys B 74(1):19–27.  https://doi.org/10.1007/s003400100750 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Istituto di Struttura della Materia-CNR (ISM-CNR)Division of Ultrafast Processes in Materials (FLASHit)Monterotondo ScaloItaly
  2. 2.Istituto di Struttura della Materia-CNR (ISM-CNR)Division of Ultrafast Processes in Materials (FLASHit)RomeItaly
  3. 3.Istituto di Struttura della Materia-CNR (ISM-CNR)Monterotondo ScaloItaly

Personalised recommendations