, Volume 13, Issue 5, pp 1623–1630 | Cite as

Controlling Optical Absorption of Graphene in Near-infrared Region by Surface Plasmons

  • Banafsheh Yektaparast
  • Hossein ShirkaniEmail author


Nowadays, graphene has many applications in optical instruments, biosensors, gas sensors, photovoltaic cells, and so on. In this study, we aimed at investigating the optical properties of graphene under the influence of plasmons created in one-dimensional photonic crystal structure by making use of the absorption spectrum. We put the gold photonic crystal in adjacent to graphene and placed an antireflection layer on top of it. Then, we studied the behavior of graphene absorption peaks in a near-infrared region. By analyzing the graphene behavior in this region, we observed that graphene absorption was increased up to 40% and graphene absorption value in absorption peak, absorption peak wavelength, absorption spectra width, and also its absorption spectra in a wide wavelength range from 1000 to 2500 nm, could be controlled by making use of different factors such as the substance of antireflection layer and photonic crystal geometric dimensions. This structure can make many applications possible for graphene such as using it to build biosensors to identify uric acid and some of the lipids that have specific significances in detecting atherosclerotic lesions as well as diagnosing the states of disease.


Graphene Photonic crystal Nanoplasmonic Near-infrared 


  1. 1.
    Novoselov S (2010) The Nobel Prize in Physics 2010 honours two scientists, who have made the decisive contributions to this development. They are Andre K. Geim and Konstantin S. Novoselov, both at the University of Manchester, UK. They have succeeded in producing, isolating, identifying and characterizing grapheneGoogle Scholar
  2. 2.
    Ooi KJ, Cheng JL, Sipe JE, Ang LK, Tan DT (2016) Ultrafast, broadband, and configurable midinfrared all-optical switching in nonlinear graphene plasmonic waveguides. APL Photon 1(4):046101–046111. CrossRefGoogle Scholar
  3. 3.
    Li W, Chen B, Meng C, Fang W, Xiao Y, Li X et al (2014) Ultrafast all-optical graphene modulator. Nano Lett 14(2):955–959. CrossRefPubMedGoogle Scholar
  4. 4.
    Chang H, Wu H (2013) Graphene-based nanomaterials: synthesis, properties, and optical and optoelectronic applications. Adv Funct Mater 23(16):1984–1997. CrossRefGoogle Scholar
  5. 5.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622. CrossRefGoogle Scholar
  6. 6.
    Bao Q, Loh KP (2012) Graphene photonics, plasmonics, and broadband optoelectronic devices. ACS Nano 6(5):3677–3694. CrossRefPubMedGoogle Scholar
  7. 7.
    Grande M, Vincenti MA, Stomeo T, Bianco GV, De Ceglia D, Aközbek N, ..., D’Orazio A (2014) Graphene-based absorber exploiting guided mode resonances in one-dimensional gratings. Opt Express, 22(25):31511–31519, DOI: CrossRefGoogle Scholar
  8. 8.
    Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19(2):458–466. CrossRefPubMedGoogle Scholar
  9. 9.
    Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS 2-Au films. IEEE Photon J 8(6):1–8CrossRefGoogle Scholar
  10. 10.
    Maurya JB, Prajapati YK (2016) A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt Quant Electron 48(5):280. CrossRefGoogle Scholar
  11. 11.
    Maharana PK, Jha R, Palei S (2014) Sensitivity enhancement by air mediated graphene multilayer based surface plasmon resonance biosensor for near infrared. Sensors Actuators B Chem 190:494–501. CrossRefGoogle Scholar
  12. 12.
    Cheng H, Chen S, Yu P, Duan X, Xie B, Tian J (2013) Dynamically tunable plasmonically induced transparency in periodically patterned graphene nanostrips. Appl Phys Lett 103(20):203112. CrossRefGoogle Scholar
  13. 13.
    Cheng H, Chen S, Yu P, Liu W, Li Z, Li J, Xie B, Tian J (2015) Dynamically tunable broadband infrared anomalous refraction based on graphene metasurfaces. Adv Opt Mater 3(12):1744–1749. CrossRefGoogle Scholar
  14. 14.
    Guo CC, Zhu ZH, Yuan XD, Ye WM, Liu K, Zhang JF, Xu W, Qin SQ (2016) Experimental demonstration of total absorption over 99% in the near infrared for monolayer-graphene-based subwavelength structures. Adv Opt Mater 4(12):1955–1960. CrossRefGoogle Scholar
  15. 15.
    Wang F, Zhang Y, Tian C, Girit C, Zettl A, Crommie M, Shen YR (2008) Gate-variable optical transitions in graphene. Science 320(5873):206–209. CrossRefPubMedGoogle Scholar
  16. 16.
    Huang S, Song C, Zhang G, Yan H (2016) Graphene plasmonics: physics and potential applications. Nano 6(6):1191–1204Google Scholar
  17. 17.
    Zhang Q, Li X, Hossain MM, Xue Y, Zhang J, Song J, …, Gu M (2014) Graphene surface plasmons at the near-infrared optical regime. Sci Rep 4:1–6Google Scholar
  18. 18.
    Low T, Avouris P (2014) Graphene plasmonics for terahertz to mid-infrared applications. ACS Nano 8(2):1086–1101. CrossRefPubMedGoogle Scholar
  19. 19.
    Brar VW, Jang MS, Sherrott M, Kim S, Lopez JJ, Kim LB, Choi M, Atwater H (2014) Hybrid surface-phonon-plasmon polariton modes in graphene/monolayer h-BN heterostructures. Nano Lett 14(7):3876–3880. CrossRefPubMedGoogle Scholar
  20. 20.
    Jablan M, Buljan H, Soljačić M (2009) Plasmonics in graphene at infrared frequencies. Phys Rev B 80(24):245435. CrossRefGoogle Scholar
  21. 21.
    Rodrigo D, Limaj O, Janner D, Etezadi D, de Abajo FJG, Pruneri V, Altug H (2015) Mid-infrared plasmonic biosensing with graphene. Science 349(6244):165–168. CrossRefPubMedGoogle Scholar
  22. 22.
    Moskovits M (1985) Surface-enhanced spectroscopy. Rev Mod Phys 57(3):783–826. CrossRefGoogle Scholar
  23. 23.
    Hillenbrand R, Taubner T, Keilmann F (2002) Phonon-enhanced light-matter interaction at the nanometre scale. Nature 418(6894):159–162. CrossRefPubMedGoogle Scholar
  24. 24.
    Dintinger J, Klein S, Bustos F, Barnes WL, Ebbesen TW (2005) Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays. Phys Rev B 71(3):035424. CrossRefGoogle Scholar
  25. 25.
    Sugawara Y, Kelf TA, Baumberg JJ, Abdelsalam ME, Bartlett PN (2006) Strong coupling between localized plasmons and organic excitons in metal nanovoids. Phys Rev Lett 97(26):266808. CrossRefPubMedGoogle Scholar
  26. 26.
    Schlather AE, Large N, Urban AS, Nordlander P, Halas NJ (2013) Near-field mediated plexcitonic coupling and giant Rabi splitting in individual metallic dimers. Nano Lett 13(7):3281–3286. CrossRefPubMedGoogle Scholar
  27. 27.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. CrossRefPubMedGoogle Scholar
  28. 28.
    Lal S, Clare SE, Halas NJ (2008) Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 41(12):1842–1851. CrossRefPubMedGoogle Scholar
  29. 29.
    Schwartz T, Hutchison JA, Genet C, Ebbesen TW (2011) Reversible switching of ultrastrong light-molecule coupling. Phys Rev Lett 106(19):196405. CrossRefPubMedGoogle Scholar
  30. 30.
    Ghamsari BG, Olivieri A, Variola F, Berini P (2014) Enhanced Raman scattering in graphene by plasmonic resonant Stokes emission. Nano 3(6):363–371Google Scholar
  31. 31.
    Zhong Y, Malagari SD, Hamilton T, Wasserman DM (2015) Review of mid-infrared plasmonic materials. J Nanophoton 9(1):093791. CrossRefGoogle Scholar
  32. 32.
    Koppens FH, Chang DE, García de Abajo FJ (2011) Graphene plasmonics: a platform for strong light–matter interactions. Nano Lett 11(8):3370–3377. CrossRefPubMedGoogle Scholar
  33. 33.
    Piper JR, Fan S (2014) Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photon 1(4):347–353. CrossRefGoogle Scholar
  34. 34.
    Thongrattanasiri S, Koppens FH, De Abajo FJG (2012) Complete optical absorption in periodically patterned graphene. Phys Rev Lett 108(4):047401. CrossRefPubMedGoogle Scholar
  35. 35.
    Hashemi M, Farzad MH, Mortensen NA, Xiao S (2013) Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures. J Opt 15(5):055003. CrossRefGoogle Scholar
  36. 36.
    Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94(3):031901. CrossRefGoogle Scholar
  37. 37.
    Zeitler M, Sienz S, Rauschenbach B (1998) Study of stress evolution of boron nitride films prepared by ion assisted deposition. J Vac Sci Technol A 17(2):597–602CrossRefGoogle Scholar
  38. 38.
    Cai Y, Zhu J, Liu QH (2015) Tunable enhanced optical absorption of graphene using plasmonic perfect absorbers. Appl Phys Lett 106(4):043105. CrossRefGoogle Scholar
  39. 39.
    Dean CR, Young AF, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard KL, Hone J (2010) Boron nitride substrates for high-quality graphene electronics. Nat Nanotechnol 5(10):722–726. CrossRefPubMedGoogle Scholar
  40. 40.
    Woessner A, Lundeberg MB, Gao Y, Principi A, Alonso-González P, Carrega M et al (2015) Highly confined low-loss plasmons in graphene-boron nitride heterostructures. Nat Mater 14:421–425CrossRefGoogle Scholar
  41. 41.
    Liu Y, Chadha A, Zhao D, Piper JR, Jia Y, Shuai Y, …, Xia F (2014) Approaching total absorption at near infrared in a large area monolayer graphene by critical coupling. Appl Phys Lett 105(18):181105CrossRefGoogle Scholar
  42. 42.
    Kim J (2015) Noninvasive uric acid monitoring device using near-infrared spectroscopy. J Biosens Bioelectron 6(4):1CrossRefGoogle Scholar
  43. 43.
    Jansen K, Wu M, van der Steen AF, van Soest G (2014) Photoacoustic imaging of human coronary atherosclerosis in two spectral bands. Photo-Dermatology 2(1):12–20Google Scholar
  44. 44.
    Jansen K, Wu M, van der Steen AF, van Soest G (2013) Lipid detection in atherosclerotic human coronaries by spectroscopic intravascular photoacoustic imaging. Opt Express 21(18):21472–21484. CrossRefPubMedGoogle Scholar
  45. 45.
    Wang B, Su JL, Amirian J, Litovsky SH, Smalling R, Emelianov S (2010) Detection of lipid in atherosclerotic vessels using ultrasound-guided spectroscopic intravascular photoacoustic imaging. Opt Express 18(5):4889–4897. CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Wu M, Jansen K, van der Steen AF, van Soest G (2015) Specific imaging of atherosclerotic plaque lipids with two-wavelength intravascular photoacoustics. Biomedic Opt Express 6(9):3276–3286. CrossRefGoogle Scholar
  47. 47.
    Zhao J, Zhang X, Yonzon CR, Haes AJ, Van Duyne RP (2006) Localized surface plasmon resonance biosensors. Nanomedicine 1(2):219–228. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Physics DepartmentPersian Gulf UniversityBushehrIran

Personalised recommendations