Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1615–1621 | Cite as

Propagation Properties of Nanoscale Three-Dimensional Plasmonic Waveguide Based on Hybrid of Two Fundamental Planar Optical Metal Waveguides

  • Wenjin Wang
  • Huimin Ye
  • Qian Wang
  • Weihua Lin
Article
  • 134 Downloads

Abstract

In this paper, a nanoscale three-dimensional plasmonic waveguide (TDPW), created by depositing an Ag stripe on a SiO2 layer with an Ag substrate, is introduced and theoretically investigated at visible and telecom wavelengths. By applying the effective index method and finite-difference time-domain numerical simulations, the authors find that the propagation properties of surface plasmon polaritons (SPPs) in the TDPW, including the propagation length and beam width, are mainly decided by the core (the SiO2 layer just under the Ag stripe) itself, due to the much stronger localization of SPPs in the core than in the two side claddings (the SiO2 layer without the covered Ag stripe). And propagating SPPs in the TDPW are strongly confined in the core region, even with a very small waveguide cross section. Furthermore, based on the stronger localization of propagation SPPs in the TDPW, two kinds of bending waveguides, oblique bending and 90° circular bending waveguides, are also investigated. For wavelength of 1550 nm, the 90° circular bending guide with a minimum radius as small as 2.6 μm show nearly zero radiation loss, even with a small waveguide cross section of 70 × 80 nm2. The proposed TDPW is suitable for planar integration and provides a possible way for constructing various nanoscale counterparts of conventional integrated devices such as splitter, resonator, sensor, and optical switch.

Keywords

Surface plasmon polaritons Nanoscale optical waveguide Photonic integrated circuits Finite-difference time-domain 

Notes

Funding information

This work is financially supported by the National Nature Science Foundation of China (Grant Nos. 61575145, 61205166, and J1210061).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

References

  1. 1.
    Barnes W, Dereux A, Ebbesen T (2003) Surface plasmon subwavelength optics. Nature 424(6950):824–830.  https://doi.org/10.1038/nature01937 CrossRefPubMedGoogle Scholar
  2. 2.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193.  https://doi.org/10.1126/science.1114849 CrossRefPubMedGoogle Scholar
  3. 3.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nat Photonics 4(2):83–91.  https://doi.org/10.1038/nphoton.2009.282 CrossRefGoogle Scholar
  4. 4.
    Maier SA, Kik PG, Atwater HA, Meltzer S, Harel E, Koel BE, Requicha AAG (2003) Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides. Nat Mater 2(4):229–232.  https://doi.org/10.1038/nmat852 CrossRefPubMedGoogle Scholar
  5. 5.
    Dickson RM, Lyon LA (2000) Unidirectional plasmon propagation in metallic nanowires. J Phys Chem B 104(26):6095–6098.  https://doi.org/10.1021/jp001435b CrossRefGoogle Scholar
  6. 6.
    Weeber JC, Krenn JR, Dereux A, Lamprecht B, Lacroute Y, Goudonnet JP (2001) Near-field observation of surface plasmon polariton propagation on thin metal stripes. Phys Rev B 64(4):045411.  https://doi.org/10.1103/PhysRevB.64.045411 CrossRefGoogle Scholar
  7. 7.
    Tanaka K, Tanaka M (2003) Simulations of nanometric optical circuits based on surface plasmon polariton gap waveguide. Appl Phys Lett 82(8):1158–1160.  https://doi.org/10.1063/1.1557323 CrossRefGoogle Scholar
  8. 8.
    Veronis G, Fan S (2005) Bends and splitters in metal-dielectric-metal subwavelength plasmonic waveguides. Appl Phys Lett 87(13):131102.  https://doi.org/10.1063/1.2056594 CrossRefGoogle Scholar
  9. 9.
    Kusunoki F, Yotsuya T, Takahara J, Kobayashi T (2005) Propagation properties of guided waves in index-guided two-dimensional optical waveguides. Appl Phys Lett 86(21):211101.  https://doi.org/10.1063/1.1935034 CrossRefGoogle Scholar
  10. 10.
    Pile DFP, Ogawa T, Gramotnev DK, Matsuzaki Y, Vernon KC, Yamaguchi K, Okamoto T, Haraguchi M, Fukui M (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87(26):261114.  https://doi.org/10.1063/1.2149971 CrossRefGoogle Scholar
  11. 11.
    Liu L, Han Z, He S (2005) Novel surface plasmon waveguide for high integration. Opt Exp 13(17):6645–6650.  https://doi.org/10.1364/OPEX.13.006645 CrossRefGoogle Scholar
  12. 12.
    Wang B, Wang GP (2004) Metal heterowaveguides for nanometric focusing of light. Appl Phys Lett 85:3559–3601Google Scholar
  13. 13.
    Wang B, Wang GP (2007) Planar metal heterostructures for nanoplasmonic waveguides. Appl Phys Lett 90(1):013114.  https://doi.org/10.1063/1.2430682 CrossRefGoogle Scholar
  14. 14.
    Wang B, Wang GP (2005) Simulations of nanoscale interferometer and array focusing by metal heterowaveguides. Opt Exp 13(26):10558–10563.  https://doi.org/10.1364/OPEX.13.010558 CrossRefGoogle Scholar
  15. 15.
    Chen L, Wang B, Wang GP (2006) High efficiency 90 bending metal heterowaveguides for nanophotonic integration. Appl Phys Lett 89(24):243120.  https://doi.org/10.1063/1.2404596 CrossRefGoogle Scholar
  16. 16.
    Kusunoki F, Yotsuya T, Takahara J (2006) Confinement and guiding of two-dimensional optical waves by low-refractive-index cores. Opt Express 14(12):5651–5656.  https://doi.org/10.1364/OE.14.005651 CrossRefPubMedGoogle Scholar
  17. 17.
    Pile DFP, Gramotnev DK (2009) Channel plasmon–polariton in a triangular groove on a metal surface. Opt Lett 29:1069–1071CrossRefGoogle Scholar
  18. 18.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95(4):046802.  https://doi.org/10.1103/PhysRevLett.95.046802 CrossRefPubMedGoogle Scholar
  19. 19.
    Bozhevolnyi S, Volkov V, Devaux E, Laluet J, Ebbesen T (2006) Channel plasmon subwavelength waveguide components including interferometers and ring resonators. Nature 440(7083):508–511.  https://doi.org/10.1038/nature04594 CrossRefPubMedGoogle Scholar
  20. 20.
    Moreno E, Rodrigo SG, Bozhevolnyi SI, Martín-Moreno L, García-Vidal FJ (2008) Guiding and focusing of electromagnetic fields with wedge plasmon polaritons. Phys Rev Lett 100:023901CrossRefGoogle Scholar
  21. 21.
    Bian Y, Zheng Z, Zhao X, Liu L, Su Y, Zhu J, Zhou T (2013) Modal properties of triangular metal groove/wedge based hybrid plasmonic structures for laser actions at deep-subwavelength scale. Opt Commun 297:102–108.  https://doi.org/10.1016/j.optcom.2013.01.075 CrossRefGoogle Scholar
  22. 22.
    Steinberger B, Hohenau A, Ditlbacher H, Stepanov AL, Drezet A, Aussenegg FR, Leitner A, Krenn JR (2006) Dielectric stripes on gold as surface plasmon waveguides. Appl Phys Lett 88(9):094104.  https://doi.org/10.1063/1.2180448 CrossRefGoogle Scholar
  23. 23.
    Krasavin AV, Zayats AV (2007) Passive photonic elements based on dielectric-loaded surface plasmon polariton waveguides. Appl Phys Lett 90(21):211101.  https://doi.org/10.1063/1.2740485 CrossRefGoogle Scholar
  24. 24.
    Tsilipakos O, Yioultsis TV, Kriezis EE (2009) Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Appl Phys 106(9):093109.  https://doi.org/10.1063/1.3256139 CrossRefGoogle Scholar
  25. 25.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang ANDX (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2(8):496–500.  https://doi.org/10.1038/nphoton.2008.131 CrossRefGoogle Scholar
  26. 26.
    Chu HS, Li EP, Bai P, Hegde R (2010) Optical performance of single-mode hybrid dielectric-loaded plasmonic waveguide-based components. Appl Phys Lett 96(22):221103.  https://doi.org/10.1063/1.3437088 CrossRefGoogle Scholar
  27. 27.
    Sorger VJ, Ye Z, Oulton RF, Wang Y, Bartal G, Yin X, Zhang X (2011) Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales. Nat Commun 2:331.  https://doi.org/10.1038/ncomms1315 CrossRefGoogle Scholar
  28. 28.
    Chu H, Bai P, Li E, Hoefer WRJ (2011) Hybrid dielectric-loaded plasmonic waveguide-based power splitter and ring resonator: compact size and high optical performance for nanophotonic circuits. Plasmonics 6(3):591–597.  https://doi.org/10.1007/s11468-011-9239-y CrossRefGoogle Scholar
  29. 29.
    Chu H, Akimov YA, Bai P, Li E (2011) Hybrid dielectric-loaded plasmonic waveguide and wavelength selective components for efficiently controlling light at subwavelength scale. J Opt Soc Am B 28(12):2895–2901.  https://doi.org/10.1364/JOSAB.28.002895 CrossRefGoogle Scholar
  30. 30.
    Bian Y, Gong Q (2014) Highly confined guiding of low-loss plasmon waves in hybrid metal-dielectric slot waveguides. Nanotechnology 25(34):345201.  https://doi.org/10.1088/0957-4484/25/34/345201 CrossRefPubMedGoogle Scholar
  31. 31.
    Zhang B, Bian Y, Ren L, Guo F, Tang S, Mao Z, Liu X, Sun J, Gong J, Guo X, Huang TJ (2017) Hybrid dielectric-loaded nanoridge plasmonic waveguide for low loss light transmission at the subwavelength scale. Sci Rep 7:40479.  https://doi.org/10.1038/srep40479,1-9 CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kaminow IP, Mammel WL, Weber HP (1974) Metal-clad optical waveguides: analytical and experimental study. Appl Opt 13(2):396–405.  https://doi.org/10.1364/AO.13.000396 CrossRefPubMedGoogle Scholar
  33. 33.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370–4379.  https://doi.org/10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Wenjin Wang
    • 1
  • Huimin Ye
    • 1
  • Qian Wang
    • 1
    • 2
  • Weihua Lin
    • 1
  1. 1.Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education and School of Physics and TechnologyWuhan UniversityWuhanChina
  2. 2.Department of PhysicsWenhua CollegeWuhanChina

Personalised recommendations