, Volume 13, Issue 5, pp 1603–1613 | Cite as

Discrete Optical Field Manipulation by Ag-Al Bilayer Gratings for Broadband Absorption Enhancement in Thin-Film Solar Cells

  • Yifu Chen
  • Long Wen
  • Xin Hu
  • Run Xu
  • Qin ChenEmail author


Plasmonic gratings have been widely used for light harvesting in thin-film solar cells (TFSCs). However, the detrimental parasitic metal absorption loss limits the actual light absorption in the active layer and reduces the power conversion efficiency. In this paper, it is found that the localized surface plasmon resonance (LSPR) used to increase long-wavelength light absorption has significant field concentration around the bottom corners of metal gratings, but the field distribution for the short-wavelength absorption band localizes around the top corners of gratings. Due to the differences between the spatial field distributions and the related mechanisms of metal loss, discrete optical field manipulation is proposed to suppress the ohmic loss mainly associated with LSPR and the interband transition loss associated with metal materials by using Ag-Al bilayer gratings, where Ag has a small absorption coefficient and Al has a high plasmon frequency. Fifteen to forty percent improvements of photocurrents in TFSCs with Ag-Al bilayer gratings are observed in simulation compared to the ones with single-layer metal gratings. This combined metal nanostructure scheme suppresses the loss issue of metal and extends the application potential of plasmonic light-harvesting techniques.


Surface plasmon Grating Thin-film solar cells 


Funding Information

This work was supported by the grants from the National Natural Science Foundation of China (Nos. 11604367, 11774099, 11774383, and 61574158), the National Key Research and Development Program of China (No. 2016YFB0402501), the Key Frontier Scientific Research Program of the Chinese Academy of Sciences (No. QYZDB-SSW-JSC014), the Natural Science Foundation of Jiangsu Province (No. BK20150369), and the Suzhou Science and Technology Development Program Foundation (No. SYG201529).


  1. 1.
    Polman A, Atwater HA (2012) Photonic design principles for ultrahigh-efficiency photovoltaics. Nat Mater 11(3):174–177. CrossRefPubMedGoogle Scholar
  2. 2.
    Atwater H (2011) Bending light to our will. MRS Bull 36(01):57–62. CrossRefGoogle Scholar
  3. 3.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9(3):205–213. CrossRefPubMedGoogle Scholar
  4. 4.
    Ferry VE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mater 22(43):4794–4808. CrossRefGoogle Scholar
  5. 5.
    Green MA, Pillai S (2012) Harnessing plasmonics for solar cells. Nat Photonics 6(3):130–132. CrossRefGoogle Scholar
  6. 6.
    Mandal P, Sharma S (2016) Progress in plasmonic solar cell efficiency improvement: a status review. Renew Sust Energ Rev 65:537–552. CrossRefGoogle Scholar
  7. 7.
    Jang YH, Jang YJ, Kim S, Quan LN, Chung K, Kim DH (2016) Plasmonic solar cells: from rational design to mechanism overview. Chem Rev 116(24):14982–15034. CrossRefPubMedGoogle Scholar
  8. 8.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) Surface plasmon enhanced silicon solar cells. J Appl Phys 101(9):093105. CrossRefGoogle Scholar
  9. 9.
    Lin SS, Wu ZQ, Li XQ, Zhang YJ, Zhang SJ, Wang P, Panneerselvam R, Li JF (2016) Stable 16.2% efficient surface plasmon-enhanced graphene/GaAs heterostructure solar cell. Adv Energy Mater 6(21):1600822. CrossRefGoogle Scholar
  10. 10.
    Ferry VE, Sweatlock LA, Pacifici D, Atwater HA (2008) Plasmonic nanostructure design for efficient light coupling into solar cells. Nano Lett 8(12):4391–4397. CrossRefPubMedGoogle Scholar
  11. 11.
    Yang L, Mo L, Okuno Y et al (2013) Optimal design of ultra-broadband, omnidirectional, and polarization-insensitive amorphous silicon solar cells with a core-shell nanograting structure. Prog Photovolt Res Appl 21(5):1077–1086Google Scholar
  12. 12.
    Chen X, Jia B, Saha JK, Cai B, Stokes N, Qiao Q, Wang Y, Shi Z, Gu M (2012) Broadband enhancement in thin-film amorphous silicon solar cells enabled by nucleated silver nanoparticles. Nano Lett 12(5):2187–2192. CrossRefPubMedGoogle Scholar
  13. 13.
    Wen L, Sun F, Chen Q (2014) Cascading metallic gratings for broadband absorption enhancement in ultrathin plasmonic solar cells. Appl Phys Lett 104(15):151106. CrossRefGoogle Scholar
  14. 14.
    Choy WCH, Ren X (2016) Plasmon-electrical effects on organic solar cells by incorporation of metal nanostructures. IEEE J S Top Quantum Electron 22(1):1–9. CrossRefGoogle Scholar
  15. 15.
    Ren X, Cheng J, Zhang S, Li X, Rao T, Huo L, Hou J, Choy WCH (2016) High efficiency organic solar cells achieved by the simultaneous plasmon-optical and plasmon-electrical effects from plasmonic asymmetric modes of gold nanostars. Small 12(37):5200–5207. CrossRefPubMedGoogle Scholar
  16. 16.
    Zhou ZQ, Wang LX, Shi W, Sun SL, Lu M (2016) A synergetic application of surface plasmon and field effect to improve Si solar cell performance. Nanotechnology 27(14):145203. CrossRefPubMedGoogle Scholar
  17. 17.
    Nan F, Ding SJ, Ma L et al (2016) Plasmon resonance energy transfer and plexcitonic solar cell. Nanoscale 8(32):15071–15078CrossRefGoogle Scholar
  18. 18.
    Barad HN, Ginsburg A, Cohen H, Rietwyk KJ, Keller DA, Tirosh S, Bouhadana Y, Anderson AY, Zaban A (2016) Hot electron-based solid state TiO2|Ag solar cells. Adv Mater Interfaces 3(7). CrossRefGoogle Scholar
  19. 19.
    Arinze ES, Qiu B, Nyirjesy G, Thon SM (2016) Plasmonic nanoparticle enhancement of solution-processed solar cells: practical limits and opportunities. ACS Photonics 3(2):158–173. CrossRefGoogle Scholar
  20. 20.
    Tamang A, Sai H, Jovanov V, Hossain MI, Matsubara K, Knipp D (2016) On the interplay of cell thickness and optimum period of silicon thin-film solar cells: light trapping and plasmonic losses. Prog Photovolt Res Appl 24(3):379–388. CrossRefGoogle Scholar
  21. 21.
    Jovanov V, Moulin E, Haug FJ, Tamang A, Bali SIH, Ballif C, Knipp D (2017) From randomly self-textured substrates to highly efficient thin film solar cells: influence of geometric interface engineering on light trapping, plasmonic losses and charge extraction. Sol Energy Mater Sol Cells 160:141–148. CrossRefGoogle Scholar
  22. 22.
    Stelling C, Singh CR, Karg M, König TAF, Thelakkat M, Retsch M (2017) Plasmonic nanomeshes: their ambivalent role as transparent electrodes in organic solar cells. Sci Rep 7:42530. CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Beck FJ, Polman A, Catchpole KR (2009) Tunable light trapping for solar cells using localized surface plasmons. J Appl Phys 105(11):114310. CrossRefGoogle Scholar
  24. 24.
    Lim SH, Mar W, Matheu P, Derkacs D, Yu ET (2007) Photocurrent spectroscopy of optical absorption enhancement in silicon photodiodes via scattering from surface plasmon polaritons in gold nanoparticles. J Appl Phys 101(10):104309. CrossRefGoogle Scholar
  25. 25.
    Zhu P, Jay Guo L (2012) High performance broadband absorber in the visible band by engineered dispersion and geometry of a metal-dielectric-metal stack. Appl Phys Lett 101(24):241116. CrossRefGoogle Scholar
  26. 26.
    Stokes N, Jia B, Gu M (2012) Design of lumpy metallic nanoparticles for broadband and wide-angle light scattering. Appl Phys Lett 101(14):141112. CrossRefGoogle Scholar
  27. 27.
    Chen X, Jia B, Zhang Y, Gu M (2013) Exceeding the limit of plasmonic light trapping in textured screen-printed solar cells using Al nanoparticles and wrinkle-like graphene sheets. Light: Sci Appl 2(8):e92. CrossRefGoogle Scholar
  28. 28.
    Munday JN, Atwater HA (2010) Large integrated absorption enhancement in plasmonic solar cells by combining metallic gratings and antireflection coatings. Nano Lett 11(6):2195–2201. CrossRefPubMedGoogle Scholar
  29. 29.
    Ma Y, Chen Q, Grant J, Saha SC, Khalid A, Cumming DRS (2011) A terahertz polarization insensitive dual band metamaterial absorber. Opt Lett 36(6):945–947. CrossRefPubMedGoogle Scholar
  30. 30.
    Chen Q, Sun F, Song S (2013) Subcell misalignment in vertically cascaded metamaterial absorbers. Opt Express 21(13):15896–15903. CrossRefPubMedGoogle Scholar
  31. 31.
    Lu Y, Dong W, Chen Z, Pors A, Wang Z, Bozhevolnyi SI (2016) Gap-plasmon based broadband absorbers for enhanced hot-electron and photocurrent generation. Sci Rep 6(1):30650. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Song S, Chen Q, Jin L et al (2013) Great light absorption enhancement in a graphene photodetector integrated with a metamaterial perfect absorber. Nanoscale 5(20):9615–9619CrossRefGoogle Scholar
  33. 33.
    Butun S, Aydin K (2016) Functional metal-insulator-metal top contacts for Si-based color photodetectors. J Appl Phys 120(22):223102. CrossRefGoogle Scholar
  34. 34.
    Wen L, Chen Y, Liu W et al (2017) Enhanced photoelectric and photothermal responses on silicon platform by plasmonic absorber and omni-Schottky junction. Laser Photonics Rev 11(5). CrossRefGoogle Scholar
  35. 35.
    Hu X, Chen Q, Wen L, Jin L, Wang H, Liu W (2016) Modulating spatial light by grating slot waveguides with transparent conducting oxides. IEEE Photon Technol Lett 28(15):1665–1668. CrossRefGoogle Scholar
  36. 36.
    Carrillo SGC, Nash GR, Hayat H, Cryan MJ, Klemm M, Bhaskaran H, Wright CD (2016) Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt Express 24(12):13563–13573. CrossRefPubMedGoogle Scholar
  37. 37.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348. CrossRefPubMedGoogle Scholar
  38. 38.
    Hu X, Xu G, Wen L, Wang H, Zhao Y, Zhang Y, Cumming DRS, Chen Q (2016) Metamaterial absorber integrated microfluidic terahertz sensors. Laser Photonics Rev 10(6):962–969. CrossRefGoogle Scholar
  39. 39.
    Zhang C, Zhao D, Gu D, Kim H, Ling T, Wu YKR, Guo LJ (2014) An ultrathin, smooth, and low-loss Al-doped Ag film and its application as a transparent electrode in organic photovoltaics. Adv Mater 26(32):5696–5701. CrossRefPubMedGoogle Scholar
  40. 40.
    Sharma M, Pudasaini PR, Ruiz-Zepeda F, Vinogradova E, Ayon AA (2014) Plasmonic effects of au/ag bimetallic multispiked nanoparticles for photovoltaic applications. ACS Appl Mater Interfaces 6(17):15472–15479. CrossRefPubMedGoogle Scholar
  41. 41.
    Chen X, Gu M (2016) An efficiency breakthrough in perovskite solar cells realized by Al-coated Cu nanoparticles[C]//Laser Science. Optical Society of America: JTh2A. 145Google Scholar
  42. 42.
    Massiot I, Colin C, Péré-Laperne N, Roca i Cabarrocas P, Sauvan C, Lalanne P, Pelouard JL, Collin S (2012) Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells. Appl Phys Lett 101(16):163901. CrossRefGoogle Scholar
  43. 43.
    Lin CH, Lin YM, Liang CC, Lee YY, Fung HS, Shew BY, Chen SH (2012) Extreme UV diffraction grating fabricated by nanoimprint lithography. Microelectron Eng 98:194–197. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Yifu Chen
    • 1
    • 2
  • Long Wen
    • 2
    • 3
  • Xin Hu
    • 2
  • Run Xu
    • 1
  • Qin Chen
    • 2
    • 3
    Email author
  1. 1.School of Materials Science and EngineeringShanghai UniversityShanghaiPeople’s Republic of China
  2. 2.Key Lab of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-BionicsChinese Academy of Sciences (CAS)SuzhouPeople’s Republic of China
  3. 3.Institute of NanophotonicsJinan UniversityGuangzhouPeople’s Republic of China

Personalised recommendations