Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1577–1583 | Cite as

Effect of Light Incident Angle on Fano Resonance Loss Mediation in Silver Nanoparticles Integrated Thin Silicon Wafers

  • Piyush K. Parashar
  • Sanjay K. Sardana
  • Vamsi K. Komarala
Article
  • 101 Downloads

Abstract

In this work, we have studied the role of light incidence angle in the suppression of Fano resonance loss for mediating broadband light incoupling. At light normal incidence angle, the transmission loss of silver nanoparticles (Ag NPs) integrated 100 μm silicon (Si) wafer is reduced to ~ 4 from ~ 11%, and total reflectance is reduced to 32.7 from 38.7%. The reduction in reflectance is observed only in surface plasmon off-resonance region of the NPs, but the reflectance is enhanced slightly in surface plasmon resonance (SPR) region. With the change in light incident angles, we have observed a reduction in reflectance from NPs integrated silicon wafer at SPR region. At 40° light incident angle, the reflectance is reduced to 21 from 38.7% due to minimization of the Fano resonance in SPR region of the NPs. The Fano resonance loss reduction is explained based on modification in NPs’ dipole and quadrupole modes hybridization at the silicon interface with different light incident angles instead of normal incidence. Experimental observations are validated by simulating Ag NPs’ near-fields and angular distribution of far-fields at the silicon interface, scattering efficiency spectra at different light incident angles by finite difference time domain calculations.

Keywords

Thin silicon wafer Silver nanoparticles Fano resonance Plasmon mode hybridization 

Notes

Acknowledgments

Piyush K. Parashar acknowledges MNRE, Govt. of India for fellowship, and the NRF of IIT Delhi for characterization of samples.

Funding Information

This work carried out under Clean Energy Research Initiative research grant RP03240 from Department of Science and Technology, Govt. of India.

References

  1. 1.
    International Technology Roadmap for Photovoltaics (ITRPV) Results, 2017Google Scholar
  2. 2.
    Green MA (2008) Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients. Sol Energy Mater Sol Cells 92(11):1305–1310.  https://doi.org/10.1016/j.solmat.2008.06.009 CrossRefGoogle Scholar
  3. 3.
    Zhang Y, Stokes N, Jia B, Fan S, Gu M (2014) Towards ultra-thin plasmonic silicon wafer solar cells with minimized efficiency loss. Sci Rep 4. 04939Google Scholar
  4. 4.
    Kang M, Park SG, Jeong KH (2015) Repeated solid-state dewetting of thin gold films for nanogap-rich plasmonic nanoislands. Sci Rep 5:14790.  https://doi.org/10.1038/srep14790 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Bonyar A, Csarnovics I, Veres M, Himics L, Csik A, Kaman J, Balazs L, Kokenyesi S (2018) Investigation of the performance of thermally generated gold nanoislands for LSPR and SERS applications. Sens. Actuators B: Chem 255:433–439.  https://doi.org/10.1016/j.snb.2017.08.063 CrossRefGoogle Scholar
  6. 6.
    Link S, El-Sayed MA (2010) Shape and size dependence of radiative, nonradiative and photothermal properties of gold nanocrystals. Int. Reviews in Phys Chem 19:409–453CrossRefGoogle Scholar
  7. 7.
    Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt 15(3):035005.  https://doi.org/10.1088/2040-8978/15/3/035005 CrossRefGoogle Scholar
  8. 8.
    Morawiec S, Mendes MJ, Mirabella S, Simone F, Priolo F, Crupi I (2013) Self-assembled silver nanoparticles for plasmon-enhanced solar cell back reflectors: correlation between structural and optical properties. Nanotechnology 24:26560CrossRefGoogle Scholar
  9. 9.
    Hagglund C, Zach M, Petersson G, Kasemo B (2008) Electromagnetic coupling of light into a silicon solar cell by nanodisk plasmons. Appl Phys Lett 92(5):053110.  https://doi.org/10.1063/1.2840676 CrossRefGoogle Scholar
  10. 10.
    Akimov YA, Koh WS (2011) Tolerance study of nanoparticle enhancement for thin-film silicon solar cells. Appl Phys Lett 99(6):063102.  https://doi.org/10.1063/1.3623483 CrossRefGoogle Scholar
  11. 11.
    Parashar PK, Sharma RP, Komarala VK (2016) Plasmonic silicon solar cell comprised of aluminum nanoparticles: effect of nanoparticles’ self-limiting native oxide shell on optical and electrical properties. J Appl Phys 120(14):143104.  https://doi.org/10.1063/1.4964869 CrossRefGoogle Scholar
  12. 12.
    Chen H, Shao L, Ming T, Woo KC, Man YC, Wang J, Lin HQ (2011) Observation of the Fano resonance in gold nanorods supported on high-dielectric-constant substrate. ACS Nano 5(8):6754–6763.  https://doi.org/10.1021/nn202317b CrossRefPubMedGoogle Scholar
  13. 13.
    Powell AW, Smith JM (2016) Mediating Fano losses in plasmonic scatterers by tuning the dielectric environment. Appl Phys Lett 109(12):121107.  https://doi.org/10.1063/1.4962945 CrossRefGoogle Scholar
  14. 14.
    Lukyanchuk B, Zheludev NI, Maier SA, Halas NJ, Nordlander P, Giessen H, Chong CT (2010) The Fano resonance in plasmonic nanostructures and metamaterials. Nat Matters 9(9):707–715.  https://doi.org/10.1038/nmat2810 CrossRefGoogle Scholar
  15. 15.
    Miroshnichenko AE, Flach S, Kivshar YS (2010) Fano resonances in nanoscale structures. Rev Mod Phys 82(3):2257–2298.  https://doi.org/10.1103/RevModPhys.82.2257 CrossRefGoogle Scholar
  16. 16.
    Linden S, Kuhl J, Giessen H (2001) Controlling the interaction between light and gold nanoparticles: selective suppression of extinction. Phys Rev Lett 86(20):4688–4691.  https://doi.org/10.1103/PhysRevLett.86.4688 CrossRefPubMedGoogle Scholar
  17. 17.
    Hao F, Sonnefraud Y, Dorpe PV, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8(11):3983–3988.  https://doi.org/10.1021/nl802509r CrossRefPubMedGoogle Scholar
  18. 18.
    Knight MW, Wu Y, Lassiter JB, Nordlander P, Halas NJ (2009) Substrate matter: influence of an adjacent dielectric on an individual plasmonic nanoparticle. Nano Lett 9(5):2188–2192.  https://doi.org/10.1021/nl900945q CrossRefPubMedGoogle Scholar
  19. 19.
    Araujo A, Mendes MJ, Mateus T, Vicente A, Nunes D, Calmeiro T, Fortunato E, Aguas H, Martins R (2016) Influence of the substrate on the morphology of self-assembled silver nanoparticles by rapid thermal annealing. J Phys Chem C 120(32):18235–18242.  https://doi.org/10.1021/acs.jpcc.6b04283 CrossRefGoogle Scholar
  20. 20.
    Nanda KK, Maisels A, Kruis FE, Fissan H, Stappert S (2003) Higher surface energy of free nanoparticles. Phys Rev Lett 91(10):106102.  https://doi.org/10.1103/PhysRevLett.91.106102 CrossRefPubMedGoogle Scholar
  21. 21.
    Stuart HR, Hall DG (1998) Enhanced dipole-dipole interaction between elementary radiators near a surface. Phys Rev Lett 80(25):5663–5666.  https://doi.org/10.1103/PhysRevLett.80.5663 CrossRefGoogle Scholar
  22. 22.
    Yang M, Fu Z, Lin F, Zhu X (2011) Incident angle dependence of absorption enhancement in plasmonic solar cells. Opt Express 19(S4):A763–A771.  https://doi.org/10.1364/OE.19.00A763 CrossRefPubMedGoogle Scholar
  23. 23.
    Sobhani A, Manjavaacas A, Cao Y, McClain MJ, Garcia de Abajo FJ, Nordlander P, Halas NJ (2015) Pronounced linewidth narrowing of an aluminum nanoparticle plasmon resonance by interaction with an aluminum metallic film. Nano Lett 15(10):6946–6951.  https://doi.org/10.1021/acs.nanolett.5b02883 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Piyush K. Parashar
    • 1
  • Sanjay K. Sardana
    • 1
  • Vamsi K. Komarala
    • 1
  1. 1.Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations