Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1555–1567 | Cite as

Detection of Anti-tetanus Toxoid Monoclonal Antibody by Using Modified Polycarbonate Surface

  • Salimeh Raeisi
  • Ahmad Molaeirad
  • Minoo Sadri
  • Hamideh Rouhani Nejad
Article
  • 50 Downloads

Abstract

In recent years, CD surface modification methods are employed for immunoassay techniques that is called BioCD technology. In this research, first polycarbonate surface was activated with UV ozone and a hydrophilic surface was obtained. Contact angle measurements and atomic force microscopy technique confirmed the hydrophilic property of surface. After that, tetanus toxoid was immobilized on modified CD surface then specific monoclonal antibody, gold nanoparticles conjugated antibody, silver salt, and hydroquinone were added on modified CD surface. So a sandwiches complex as tetanus toxoid, tetanus toxoid monoclonal antibody, and gold nanoparticles conjugated antibody was obtained on CD surface. ATR result showed the immobilization of tetanus toxoid on modified CD surface. Localized surface plasmon resonance (LSPR) and DLS results confirmed the complex formation. Silver salt and hydroquinone were added for signal amplification. Detection limit of anti-tetanus toxoid IgG monoclonal antibody was obtained 0.005 IU/ml by LSPR and DLS techniques. The presented method increases the assay’s sensitivity. BioCD-based immunoassay for detection of anti-tetanus toxoid IgG monoclonal antibody could be applicable in development and fabrication of biomedical devices.

Keywords

BioCD Tetanus toxoid Monoclonal antibody Gold nanoparticle LSPR 

References

  1. 1.
    Burkin MA, Sviridov VV, Perelygina OV (2004) Determination of tetanus toxin and toxoid by ELISA using monoclonal antibodies. Appl Biochem Microbiol 40(4):409–414CrossRefGoogle Scholar
  2. 2.
    Jain S, Chattopadhyay S, Jackeray R, Abid CKVZ, Kumar M, Singh H (2010) Detection of anti-tetanus toxoid antibody on modified polyacrylonitrile fibers. Talanta 82(5):1876–1883CrossRefGoogle Scholar
  3. 3.
    Reder S, Riffelmann M, Becker C, von Knig CHW (2008) Measuring immunoglobulin G antibodies to tetanus toxin, diphtheria toxin, and pertussis toxin with single-antigen enzyme-linked immunosorbent assays and a bead-based multiplex assay. Clin Vaccine Immunol 15(5):744–749CrossRefGoogle Scholar
  4. 4.
    Borrow R, Balmer P, Roper MH (2007) The immunological basis for immunization series module 3: tetanus, update 2006, Immonization, Vaccines and Biologicals. World Health Organization, GenevaGoogle Scholar
  5. 5.
    Yu H-Z (2004) New chemistry on old CDs. Chem Commun 0:2633–2636Google Scholar
  6. 6.
    Ou M-LL (2007) Reading disc-based bioassays for protein biomarkers with standard computer drives. MASTER OF SCIENCE, Department of Chemistry, SIMON FRASER UNIVERSITY, CanadaGoogle Scholar
  7. 7.
    Yusoff NA, Soin N, Ibrahim F (2009) Lab-on-a-disk as a potential microfluidic platform for dengue NS1-ELISA, in Industrial Electronics & Applications, 2009. ISIEA 2009. IEEE Symposium on, vol. 2, pp 946–950: IEEEGoogle Scholar
  8. 8.
    Jana NR, Gearheart L, Murphy CJ (2001) Seeding growth for size control of 5-40 nm diameter gold nanoparticles. Langmuir 17(22):6782–6786CrossRefGoogle Scholar
  9. 9.
    Vig JR (1979) UV/ozone cleaning of surfaces: A review, in Surface Contamination: Springer, pp 235–254Google Scholar
  10. 10.
    Rusmini F, Zhong Z, Feijen J (2007) Protein immobilization strategies for protein biochips. Biomacromolecules 8(6):1775–1789CrossRefGoogle Scholar
  11. 11.
    Li X, Weng S, Ge B, Yao Z, Yu H-Z (2014) DVD technology-based molecular diagnosis platform: quantitative pregnancy test on a disc. Lab Chip 14(10):1686–1694CrossRefGoogle Scholar
  12. 12.
    Hall WP, Ngatia SN, Van Duyne RP (2011) LSPR biosensor signal enhancement using nanoparticle antibody conjugates. J Phys Chem C 115(5):1410–1414CrossRefGoogle Scholar
  13. 13.
    Ashworth-Sharpe J et al (2016) Antibody-nanoparticle conjugates and methods for making and using such conjugates, ed: Google patentsGoogle Scholar
  14. 14.
    Dobosz P, Morais S, Puchades R, Maquieira A (2015) Nanogold bioconjugates for direct and sensitive multiplexed immunosensing. Biosens Bioelectron 69:294–300CrossRefGoogle Scholar
  15. 15.
    Lange SA et al (2006) Measuring biomolecular binding events with a compact disc player device. Angew Chem 118(2):276–279CrossRefGoogle Scholar
  16. 16.
    Liu R, Zhang Y, Zhang S, Qiu W, Gao Y (2014) Silver enhancement of gold nanoparticles for biosensing: from qualitative to quantitative. Appl Spectrosc Rev 49(2):121–138CrossRefGoogle Scholar
  17. 17.
    Al-Azawi MA, Bidin N, Abbas KN, Bououdina M, Azzez SA (2016) Broadband optical absorption enhancement of N719 dye in ethanol by gold silver alloy nanoparticles fabricated under laser ablation technique. J Nanophotonics 10(2):026009–026009CrossRefGoogle Scholar
  18. 18.
    Molaeirad A, Asl AL, Alijanianzadeh M (2015) Assay of bacteriorhodopsin stability on polycarbonate surface by using of FTIR-ATR: a model of disk-based bioassays. J Bioenerg Biomembr 47(4):355–360CrossRefGoogle Scholar
  19. 19.
    Morais S, Carrascosa J, Mira D, Puchades R, Maquieira Á (2007) Microimmunoanalysis on standard compact discs to determine low abundant compounds. Anal Chem 79(20):7628–7635CrossRefGoogle Scholar
  20. 20.
    MacBeath G, Schreiber SL (2000) Printing proteins as microarrays for high-throughput function determination. Science 289(5485):1760–1763PubMedGoogle Scholar
  21. 21.
    Wen J, Shi X, He Y, Zhou J, Li Y (2012) Novel plastic biochips for colorimetric detection of biomolecules. Anal Bioanal Chem 404(6–7):1935–1944CrossRefGoogle Scholar
  22. 22.
    Shan W et al (2014) An aptamer-based quartz crystal microbalance biosensor for sensitive and selective detection of leukemia cells using silver-enhanced gold nanoparticle label. Talanta 126:130–135CrossRefGoogle Scholar
  23. 23.
    Lin D, Wu J, Ju H, Yan F (2014) Nanogold/mesoporous carbon foam-mediated silver enhancement for graphene-enhanced electrochemical immunosensing of carcinoembryonic antigen. Biosens Bioelectron 52:153–158CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • Salimeh Raeisi
    • 1
  • Ahmad Molaeirad
    • 1
  • Minoo Sadri
    • 1
  • Hamideh Rouhani Nejad
    • 1
  1. 1.Department of Biotechnology and BioscienceMalek-Ashtar University of TechnologyTehranIran

Personalised recommendations