Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1541–1547 | Cite as

Magneto-Electric Double Fano Resonances in Hybrid Split Ring/Disk Hetero-Cavity

  • Zhiqiang Hao
  • Yune Gao
  • Zhenxian Huang
  • Xinyi Liang
Article

Abstract

In this work, we conceive and demonstrate the magneto-electric double Fano resonances of a hetero-cavity composed of Si disk and Au split ring, where Si disk can provide additional magnetic responses besides electric responses. The interference between electric and magnetic responses in proposed hetero-cavity gives rise to magneto-electric double Fano resonances with magnetic and electric near-field enhancements. Dipole radiative enhancement is used to analyze magnetic and electric responses of hetero-cavity and the spectral features of hetero-cavity can be used to quantitatively characterize by coupled oscillator model. And the spectral tunability of magneto-electric double Fano resonances is investigated, highlighting a potential for applications in low-loss sensing and nanophotonic devices.

Keywords

Surface plasmon resonance Symmetry breaking Nanoparticles 

Notes

Funding

This work was supported by the key project of the Natural Science Foundation of Tianjin City under Grant No 10JCZDJC23600.

References

  1. 1.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. Wiley, New YorkGoogle Scholar
  2. 2.
    Hulst HCVD, Twersky V (1957) Light scattering by small particles. Wiley, New York 47:87–94Google Scholar
  3. 3.
    Geffrin JM, García-Cámara B, Gómez-Medina R, Albella P, Froufe-Pérez L, Eyraud C, Litman A, Vaillon R, González F, Nieto-Vesperinas M (2012) Magnetic and electric coherence in forward- and back-scattered electromagnetic waves by a single dielectric subwavelength sphere. Nat Commun 3:542–555CrossRefGoogle Scholar
  4. 4.
    Evlyukhin AB, Novikov SM, Zywietz U, Eriksen RL, Reinhardt C, Bozhevolnyi SI, Chichkov BN (2012) Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region. Nano Lett 12:3749CrossRefGoogle Scholar
  5. 5.
    Fu YH, Kuznetsov AI, Miroshnichenko AE, Yu YF, Luk'yanchuk B (2012) Directional visible light scattering by silicon nanoparticles. Nat Commun 4:1527CrossRefGoogle Scholar
  6. 6.
    Moreno F, Nietovesperinas M, Saenz JJ (2011) Electric and magnetic dipolar response of germanium nanospheres: interference effects; scattering anisotropy; and optical forces. Physics 5:30–32Google Scholar
  7. 7.
    García-Etxarri A, Gómez-Medina R, Froufe-Pérez LS, López C, Chantada L, Scheffold F, Aizpurua J, Nieto-Vesperinas M, Sáenz JJ (2011) Strong magnetic response of submicron silicon particles in the infrared. Opt Express 19:4815–4826CrossRefGoogle Scholar
  8. 8.
    Hopkins B, Filonov DS, Miroshnichenko AE, Monticone F, Alù A, Kivshar YS (2015) Interplay of magnetic responses in all-dielectric oligomers to realize magnetic Fano resonances. Acs Photon 2:724CrossRefGoogle Scholar
  9. 9.
    Filonov DS, Slobozhanyuk AP, Krasnok AE, Belov PA, Nenasheva EA, Hopkins B, Miroshnichenko AE, Kivshar YS (2014) Nearfield mapping of Fano resonances in all-dielectric oligomers. Appl Phys Lett 104:226–234CrossRefGoogle Scholar
  10. 10.
    Miroshnichenko AE, Kivshar YS (2012) Fano resonances in all dielectric oligomers. Nano Lett 12:6459–6463CrossRefGoogle Scholar
  11. 11.
    Chong KE, Hopkins B, Staude I, Miroshnichenko AE, Dominguez J, DeckerM NDN, Brener I, Kivshar YS (2014) Observation of Fano resonances in all-dielectric nanoparticle oligomers. Small 10:1985–1990CrossRefGoogle Scholar
  12. 12.
    Zhang S, Bao K, Halas NJ, Xu H, Nordlander P (2011) Substrate-induced Fano resonances of a plasmonic nanocube: a route to increased-sensitivity localized surface plasmon resonance sensors revealed. Nano Lett 11:1657CrossRefGoogle Scholar
  13. 13.
    Fang ZY, Cai JY, Yan ZB, Nordlander P, Halas NJ, Zhu X (2011) Removing a wedge from a metallic nanodisk reveals a Fano resonance. Nano Lett 11:4475CrossRefGoogle Scholar
  14. 14.
    Wang H, Liu P, Ke YL, Su YK, Zhang L, Xu NS, Deng SZ, Chen HJ (2015) Janus magneto-electric nanosphere dimers exhibiting unidirectional visible light scattering and strong electromagnetic field enhancement. ACS Nano 9:436CrossRefGoogle Scholar
  15. 15.
    Ci X, Wu B, Liu Y, Chen G, Wu E, Zeng H (2014) Magnetic-based Fano resonance of hybrid silicon-gold nanocavities in the near-infrared region. Opt Express 22:23749–23758CrossRefGoogle Scholar
  16. 16.
    Miroshnichenko AE, Luk'Yanchuk B, Maier SA, Kivshar YS (2012) Optically induced interaction of magnetic moments in hybrid metamaterials. ACS Nano 6:837CrossRefGoogle Scholar
  17. 17.
    Wang WD, Wang YL, Shi Y, Liu YJ (2016) Magnetic-based double Fano resonances in Au-SiO2-Si multilayer nanoshells. Plasmonics 12:1537–1543CrossRefGoogle Scholar
  18. 18.
    Wang WD, Zhao X, Zheng L, Xiong L, Liu YJ, Lin H (2016) Highly-tunable magnetic and electric responses in the perforated Au-SiO2-Si multilayer nanoshells. Plasmonics.  https://doi.org/10.1007/s11468-017-0507-3 CrossRefGoogle Scholar
  19. 19.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  20. 20.
    Palik ED (1985) Handbook of optical constants of solids. Academic Press: Boston, MA, 33:189CrossRefGoogle Scholar
  21. 21.
    Clark AW, Sheridan AK, Glidle A, Cumming DRS, Cooper JM (2007) Tuneable visible resonances in crescent shaped nano-split-ring resonators. Appl Phys Lett 91:1667CrossRefGoogle Scholar
  22. 22.
    Sheridan AK, Clark AW, Glidle A, Cooper JM, Cumming DRS (2007) Multiple plasmon resonances from gold nanostructures. Appl Phys Lett 90:1065CrossRefGoogle Scholar
  23. 23.
    Cai D, Huang Y, Wang J, Chen J, Chen Z, Liu S (2015) Fano resonances generated in a single dielectric homogeneous nanoparticle with high structural symmetry. J Phys Chem C 119:4252–4260CrossRefGoogle Scholar
  24. 24.
    Fan JA, Bao K, Wu C, Bao J, Bardhan R, Halas NJ, Manoharan VN, Shvets G, Nordlander P, Capasso F (2010) Fano-like interference in self-assembled plasmonic quadrumer clusters. Nano Lett 10:4680–4685CrossRefGoogle Scholar
  25. 25.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138CrossRefGoogle Scholar
  26. 26.
    Liu SD, Yang YB, Chen ZH, Wang WJ, Fei HM, Zhang MJ, Wang YC (2013) Excitation of multiple Fano resonances in plasmonic clusters with D2h point group symmetry. J Phys Chem C 117:14218–14228CrossRefGoogle Scholar
  27. 27.
    Nazir A, Panaro S, Zaccaria RP, Liberale C, Angelis FD, Toma A (2014) Fano coil-type resonance for magnetic hot-spot generation. Nano Lett 14:3166–3171CrossRefGoogle Scholar
  28. 28.
    Shafiei F, Monticone F, Hartsfield T, Alù A, Li XQ (2013) A subwavelength plasmonic metamolecule exhibiting magnetic-based optical Fano resonance. Nat Nanotechnol 8:95–99CrossRefGoogle Scholar
  29. 29.
    Sheikholeslami SN, Garcíaetxarri A, Dionne JA (2011) Controlling the interplay of electric and magnetic modes via Fano-like plasmon resonances. Nano Lett 11:3927–3934CrossRefGoogle Scholar
  30. 30.
    Hao F, Sonnefraud Y, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and a tunable Fano resonance. Nano Lett 8:3983–3988CrossRefGoogle Scholar
  31. 31.
    Hao F, Nordlander P, Sonnefraud Y, Dorpe PV, Maier SA (2009) Tunability of subradiant dipolar and Fano-type plasmon resonances in metallic ring/disk cavities: implications for nanoscale optical sensing. ACS Nano 3:643CrossRefGoogle Scholar
  32. 32.
    Sonnefraud Y, Verellen N, Sobhani H, Vandenbosch GAE, Moshchalkov VV, Dorpe PV, Nordlander P, Maier SA (2010) Experimental realization of subradiant, superradiant, and Fano resonances in ring/disk plasmonic nanocavities. ACS Nano 4:1664CrossRefGoogle Scholar
  33. 33.
    Fan P, Yu Z, Fan S, Brongersma ML (2014) Optical Fano resonance of an individual semiconductor nanostructure. Nat Mater 13:471CrossRefGoogle Scholar
  34. 34.
    Luk’Yanchuk BS, Miroshnichenko AE, Kivshar YS (2013) Fano resonances and topological optics: an interplay of far- and near-field interference phenomena. J Opt 15:3001CrossRefGoogle Scholar
  35. 35.
    Mukherjee S, Sobhani H, Lassiter JB, Bardhan R, Nordlander P, Halas NJ (2010) Fanoshells: nanoparticles with built-in Fano resonances. Nano Lett 10:2694–2701CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Physics, School of ScienceTianjin University of CommerceTianjinPeople’s Republic of China

Personalised recommendations