Advertisement

Plasmonics

, Volume 13, Issue 5, pp 1535–1540 | Cite as

Multispectral Plasmon-Induced Transparency Based on Asymmetric Metallic Nanoslices Array Metasurface

  • Menglai Zhang
  • Jicheng Wang
  • Ting Xiao
  • Yue Liang
  • Youjian Liang
  • Qinglu Qian
Article
  • 169 Downloads

Abstract

We propose a 3D metasurface structure with unsymmetrical metallic slices array. The tunable plasmon-induced transparency (PIT) effects and different electric field mode distributions could be realized by modulating the structure parameters and angle of incidence. The radiative and dark elements of the asymmetric metallic slices unit cell structure are analyzed. The transmission spectra and the electric fields distributions are studied by the finite element method (FEM). We demonstrate that PIT phenomena based on those metasurface array structures may have applications as tunable sensors and filters in nanophotonics and integrated optics.

Keywords

Metasurface Metallic slices Plasmon-induced transparency FEM 

Notes

Funding

This work is supported by the National Natural Science Foundation of China (Grant No. 11504139), the Natural Science Foundation of Jiangsu Province (Grant No. BK20140167), the China Postdoctoral Science Foundation (2017M611693), and the Training Programs of Innovation and Entrepreneurship for Undergraduates of Jiangnan University (Grant No. 2016336Y).

References

  1. 1.
    Valentine J, Zhang S, Zentgraf T, Avila EU, Genov DA, Bartal G, Zhang X (2008) Three-dimensional optical metamaterial with a negative refractive index. Nature 455:376–379CrossRefGoogle Scholar
  2. 2.
    Zheludev NI, Kivshar YS (2012) Ultrafast acousto-magneto-plasmonics. Nat Mater 11:917–924CrossRefGoogle Scholar
  3. 3.
    Schurig D, Mock JJ, Justice BJ, Cummer SA, Pendry JB, Starr AF, Smith DR (2006) Metamaterial electromagnetic cloak at microwave frequencies. Science 314:977–980CrossRefGoogle Scholar
  4. 4.
    Edwards B, Alù A, Silveirinha MG, Engheta NR (2009) Experimental verification of plasmonic cloaking at microwave frequencies with metamaterials. Phys Rev Lett 103:153901CrossRefGoogle Scholar
  5. 5.
    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13:139–150CrossRefGoogle Scholar
  6. 6.
    Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009CrossRefGoogle Scholar
  7. 7.
    Khorasaninejad M, Chen WT, Devlin RC, Oh J, ZhuAY CF (2016) Metalenses at visible wavelengths: diffraction-limited focusing and subwavelength resolution imaging. Science 352:1190–1194CrossRefGoogle Scholar
  8. 8.
    Veysi M, Guclu C, Boyraz O, Capolino F (2015) Thin anisotropic metasurfaces for simultaneous light focusing and polarization manipulation. J Opt Soc Am B 32:318–323CrossRefGoogle Scholar
  9. 9.
    Wang W, Guo Z, Zhou K, Sun Y, Shen F, Li Y, Qu S, Liu S (2015) Polarization-independent longitudinal multi-focusing metalens. Opt Express 23:29855–29866CrossRefGoogle Scholar
  10. 10.
    Shao H, Chen C, Wang J, Pan L, Sang T (2017) Metalenses based on the non-parallel double-slit arrays. J Phys D 50(38):4001–4260CrossRefGoogle Scholar
  11. 11.
    Xiong L, Chen L, Yang L, Zhang X, PuM ZZ, Ma X, Wang Y, Hong M, Luo X (2016) Multicolor 3D meta-holography by broadband plasmonic modulation. Sci Adv 2:e1601102CrossRefGoogle Scholar
  12. 12.
    Silva A, Monticone F, Castaldi G, Galdi V, Alù A, Engheta N (2016) Performing mathematical operations with metamaterials. Science 343:160–163CrossRefGoogle Scholar
  13. 13.
    Li R, Guo Z, WangW ZJ, Zhang A, Liu J, Qu S, Gao J (2014) Ultra-thin circular polarization analyzer based on the metal rectangular split-ring resonators. Opt Express 22:27968–27975CrossRefGoogle Scholar
  14. 14.
    Huang K, Dong Z, Mei S, Zhang L, Liu Y, Liu H, Zhu H, Teng J, Lukyanchuk B, Yang JKW, Qiu CW (2016) Silicon multi-meta-holograms for the broadband visible light. Laser Photonics Rev 10(500–509):269Google Scholar
  15. 15.
    Wang B, Quan B, He J, Xie Z, Wang X, Li J, Kan Q, Zhang Y (2016) Wavelength de-multiplexing metasurface hologram. Sci Rep 6:35657CrossRefGoogle Scholar
  16. 16.
    Boller KJ, Imamoğlu A, Harris SE (1991) Observation of electromagnetically induced transparency. Phys Rev Lett 66(20):2593–2596CrossRefGoogle Scholar
  17. 17.
    Chen J, Li Z, Yue S, Xiao J, Gong Q (2012) Plasmon-induced transparency in asymmetric T-shape single slit. Nano Lett 12:2494–2498CrossRefGoogle Scholar
  18. 18.
    Wang J, Niu Y, Liu D, ZD H, Sang T, Gao S (2017) Tunable Plasmon-induced transparency effect in MIM side-coupled trapezoid cavities system. Plasmonics.  https://doi.org/10.1007/s11468-017-0551-z CrossRefGoogle Scholar
  19. 19.
    Singh R, Rockstuhl C, Lederer F, Zhang W (2009) Coupling between a dark and a bright eigenmode in a terahertz metamaterial. Phys Rev B 79:085111CrossRefGoogle Scholar
  20. 20.
    Yun B, Hu G, Zhang R, Cui Y (2014) Design of a compact and high sensitive refraction index sensor base on metal-insulator-metal plasmonic Bragg grating. Opt Express 22:28662–28670CrossRefGoogle Scholar
  21. 21.
    Biswas S, Duan J, Nepal D, Park K, Pachter R, Vaia RA (2013) Plasmon-induced transparency in the visible region via self-assembled gold nanorod heterodimers. Nano Lett 13:6287–6291CrossRefGoogle Scholar
  22. 22.
    Zhang S, Genov DA, Wang Y, Liu M, Zhang X (2008) Plasmon-induced transparency in metamaterials. Phys Rev Lett 101:047401CrossRefGoogle Scholar
  23. 23.
    Liu D, Sun Y, Fan Q, Mei M, Wang J, Pan Y, Lu J (2016) Tunable plasmonically induced transparency with asymmetric multi-rectangle resonators. Plasmonics 11(6):1621–1628CrossRefGoogle Scholar
  24. 24.
    Wang J, Sun L, ZD H, Liang X, Liu C (2014) Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide. AIP Adv 4:123006CrossRefGoogle Scholar
  25. 25.
    Tang B, Wang J, Xia X, Liang X, Ci S, Qu S (2015) Plasmonic induced transparency and unidirectional control based on the waveguide structure with quadrant ring resonators. Appl Phys Express 8:032202CrossRefGoogle Scholar
  26. 26.
    Zhao X, Yuan C, Zhu L, Yao J (2016) Graphene-based tunable terahertz plasmon-induced transparency metamaterial. Nano 8:15273–15280Google Scholar
  27. 27.
    Sun C, Dong Z, Si J, Deng X (2017) Independently tunable dual-band plasmonically induced transparency based on hybrid metal-graphene metamaterials at mid-infrared frequencies. Opt Express 25:1242–1250CrossRefGoogle Scholar
  28. 28.
    Wan M, Song Y, Zhang L, Zhou F (2015) Broadband plasmon-induced transparency in terahertz metamaterials via constructive interference of electric and magnetic couplings. Opt Express 23:27361–27273CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Menglai Zhang
    • 1
  • Jicheng Wang
    • 1
    • 2
  • Ting Xiao
    • 1
  • Yue Liang
    • 1
  • Youjian Liang
    • 1
  • Qinglu Qian
    • 1
  1. 1.School of Science, Jiangsu Provincial Research Center of Light Industrial Optoelectronic Engineering and TechnologyJiangnan UniversityWuxiChina
  2. 2.School of IoT EngineeringJiangnan UniversityWuxiChina

Personalised recommendations