, Volume 13, Issue 5, pp 1513–1522 | Cite as

Surface Plasmon Polariton Waveguide by Bottom and Top of Graphene

  • Jun ZhuEmail author
  • Zhengjie Xu
  • Wenju Xu
  • Deli Fu
  • Duqu Wei


Semiconductor surface plasmon polariton (SPP) waveguide has unique optical properties and compatibility with existing integrated circuit manufacturing technology; thus, SPP devices of semiconductor materials have wide application potential. In this study, a new integrated graphene SPP waveguide is designed using the bottom and top roles of graphene. Moreover, a T waveguide structure is designed by InGaAs of semiconductor gain, with rectangular GaAs material on both sides. The structure adopts light to stimulate the SPP, where its local area is enhanced by the interaction between two interface layers and a semiconductor gain and where its frequency can be adjusted by the thickness of the graphene. Characteristic analysis reveals the coupling between the T semiconductor gain and the SPP mode. The propagation distance of the waveguide can reach 75 cm, the effective mode field is approximately 0.0951λ 2, the minimum of gain threshold is approximately 2992.7 cm−1, and the quality factor (FOM) can reach 180. The waveguide structure which provides stronger localization can be compatible with several optical and electronic nanoscale components. That means, it can provide light for surface plasmon circuit and also can provide a great development in the low-threshold nanolaser.


Semiconductor technology Graphene Waveguide Surface plasmon polariton Semiconductor gain 



This work was supported by Guangxi Natural Science Foundation (2015GXNSFBA139257), National Natural Science Foundation of China (11562004), Guangxi Key Laboratory of Automatic Detecting Technology and Instruments (YQ16206), and Innovation Project of Guangxi Graduate Education (xycsz2017054).


  1. 1.
    Spevak IS, Kuzmenko AA, Tymchenko M et al (2016) Surface plasmon-polariton resonance at diffraction of THz radiation on semiconductor gratings [J]. Low Temp Phys 42(8):698–702CrossRefGoogle Scholar
  2. 2.
    Dalsania AK, Kohl J, Kumah CE et al (2016) Effects of metal film thickness and gain on the coupling of organic semiconductor exciton emission to surface plasmon polaritons [J]. J Mater Chem C 4(42):10111–10119CrossRefGoogle Scholar
  3. 3.
    Blazek D, Cada M, Pistora J (2015) Surface plasmon polaritons at linearly graded semiconductor interfaces [J]. Opt Express 23(5):6264–6276CrossRefGoogle Scholar
  4. 4.
    Baron A, Larouche S, Gauthier DJ et al (2015) Scaling of the nonlinear response of the surface plasmon polariton at a metal/dielectric interface [J]. J Opt Soc Am B 32(1):9–14CrossRefGoogle Scholar
  5. 5.
    Dadoenkova YS, Moiseev SG, Abramov AS, Kadochkin AS, Fotiadi AA, Zolotovskii IO (2017) Surface plasmon polariton amplification in semiconductor–graphene–dielectric structure. Annalen Der Physik 529(5). CrossRefGoogle Scholar
  6. 6.
    Dai D, Shi Y, He S et al (2011) Silicon hybrid plasmonic submicron-donut resonator with pure dielectric access waveguides [J]. Opt Express 19(24):23671CrossRefGoogle Scholar
  7. 7.
    Dai D, Shi Y, He S et al (2011) Gain enhancement in a hybrid plasmonic nano-waveguide with a low-index or high-index gain medium [J]. Opt Express 19(14):12925CrossRefGoogle Scholar
  8. 8.
    Eldlio M, Gric T, Blazek D, Cada M (2016) Surface plasmon polariton dispersion in inhomogeneous semiconductors. Photonics North. IEEE, Quebec City, p 1–1.
  9. 9.
    Khalilzadeh-Rezaie F, Peale RE, Panjwani D, Smith CW, Nath J, Lodge M, Ishigami M, Nader N, Vangala S, Yannuzzi M, Cleary JW (2015) Metal-oxide-semiconductor photocapacitor for sensing surface plasmon polaritons. In: Dolne JJ, Karr TJ, Gamiz VL (eds) Unconventional imaging and wavefront sensing 2015. Proc. of SPIE vol 9617, 96170E.
  10. 10.
    Wang Q, Tang Q, Zhang D et al (2015) Study on the excitation and propagation characteristics of THz-wave surface plasmon polaritons on the surface of semiconductor [J]. Int J Nanotechnol 12(10):838–848CrossRefGoogle Scholar
  11. 11.
    Kukushkin VA, Baidus NV, Zdoroveishchev AV (2015) Diagnostics of the efficiency of surface plasmon-polariton excitation by quantum dots via polarization measurements of the output radiation [J]. Semiconductors 49(6):785–790CrossRefGoogle Scholar
  12. 12.
    Pang C, Lu H, Xu P et al (2016) Design of hybrid structure for fast and deep surface plasmon polariton modulation [J]. Opt Express 24(15):17069CrossRefGoogle Scholar
  13. 13.
    Olyaeefar B, Khoshsima H, Khorram S (2015) Inverse-rib hybrid plasmonic waveguide for low-loss deep sub-wavelength surface plasmon polariton propagation [J]. Opt Quant Electron 46(7):1–10Google Scholar
  14. 14.
    Berahman M, Asad M, Sanaee M et al (2015) Optical properties of chiral graphene nanoribbons: a first principle study [J]. Opt Quant Electron 47(10):1–12CrossRefGoogle Scholar
  15. 15.
    Xu Z, Mazumder P (2015) Terahertz analog-to-digital converter employing active-controlled spoofed surface plasmon polariton architecture: US Patent 20150323852 A1, 12 Nov 2015 Google Scholar
  16. 16.
    Zhang HC, Liu S, Shen X et al (2015) Broadband amplification of spoof surface plasmon polaritons at microwave frequencies [J]. Laser Photonics Rev 9(1):83–90CrossRefGoogle Scholar
  17. 17.
    Hickmott TW (2015) Spectra of surface plasmon polariton enhanced electroluminescence from electroformed Al-Al2O3-Ag diodes [J]. J Appl Phys 117(9):2669CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jun Zhu
    • 1
    • 2
    Email author
  • Zhengjie Xu
    • 1
  • Wenju Xu
    • 1
    • 2
  • Deli Fu
    • 1
  • Duqu Wei
    • 1
  1. 1.College of Electronic EngineeringGuangxi Normal UniversityGuilinChina
  2. 2.Guangxi Key Laboratory of Automatic Detecting Technology and InstrumentsGuilin University of Electronic TechnologyGuilinChina

Personalised recommendations