Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1467–1473 | Cite as

Enhanced Photonic Spin Hall Effect with a Bimetallic Film Surface Plasmon Resonance

  • Xing Jiang
  • Qingkai Wang
  • Jun Guo
  • Shuqing Chen
  • Xiaoyu Dai
  • Yuanjiang Xiang
Article

Abstract

The surface plasmon resonance (SPR) with the bimetallic film can achieve minimum reflectivity and higher evanescent field enhancement than the SPR configuration with the single gold film, which makes it to be a much better option for enhancing the photonic Spin Hall Effect (SHE). It is found that the thicknesses of silver and gold films have a major impact on the photonic SHE, and the maximal transverse shift of horizontal polarization state can reach to 5.34 μm near the SPR resonant angle by optimizing the thicknesses of silver and gold films in the bimetallic film. Our results are far greater than the previously reported transverse shifts in the conventional SPR structure. This novel phenomenon is attributed to the higher evanescent field enhancement and the larger refractive index variation gradient of silver/gold bimetallic film. These findings provide us an effective method to manipulate the photonic SHE and therefore establish a strong foundation for developing photonic devices based on photonic SHE.

Keywords

Surface plasmon resonance Photonic Spin Hall Effect Transverse shifts 

Notes

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China (Grant Nos. 61505111 and 11604216), the China Postdoctoral Science Foundation (Grant No.2016 M600667), the Science and Technology Planning Project of Guangdong Province (Grant No. 2016B050501005), the Educational Commission of Guangdong Province (Grant No. 2016KCXTD006), and the Guangdong Natural Science Foundation (Grant No. 2015A030313549).

References

  1. 1.
    Bliokh KY, Bliokh YP (2006) Conservation of angular momentum, transverse shift, and Spin Hall Effect in reflection and refraction of an electromagnetic wave packet. Phys Rev Lett 96:073903CrossRefGoogle Scholar
  2. 2.
    Gorodetski Y, Bliokh KY, Stein B, Genet C, Shitrit N et al (2012) Weak measurements of light chirality with a plasmonic slit. Phys Rev Lett 109:013901CrossRefGoogle Scholar
  3. 3.
    Luo H, Wen S, Shu W, Tang Z, Zou Y et al (2009) Spin Hall Effect of a light beam in left-handed materials. Phys Rev A 80:043810CrossRefGoogle Scholar
  4. 4.
    Onoda M, Murakami S, Nagaosa N (2004) Hall effect of light. Phys Rev Lett 93:083901CrossRefGoogle Scholar
  5. 5.
    Hosten O, Kwiat PG (2008) Observation of the Spin Hall Effect of light via weak measurements. Science 319:787–790CrossRefGoogle Scholar
  6. 6.
    Bliokh KY, Niv A, Kleiner V, Hasman E (2008) Geometrodynamics of spinning light. Nat Photonics 2:748–753CrossRefGoogle Scholar
  7. 7.
    Kapitanova P, Ginzburg P, Rodriguezfortuno FJ, Filonov DS, Voroshilov PM et al (2014) Photonic Spin Hall Effect in hyperbolic metamaterials for polarization-controlled routing of subwavelength modes. Nat Commun 5:3226CrossRefGoogle Scholar
  8. 8.
    Aiello A, Woerdman JP (2008) Role of beam propagation in Goos-Hänchen and Imbert-Fedorov shifts. Opt Lett 33:1437–1439CrossRefGoogle Scholar
  9. 9.
    Luo H, Ling X, Zhou X, Shu W, Wen S, et al. (2011) Enhancing or suppressing Spin Hall Effect of light in layered nanostructures. Phys Rev A 84:033801Google Scholar
  10. 10.
    Dartora CA, Matielli MHK, De Campos FKR, Filho HTS, Cabrera GG, et al. (2011) Lagrangian-Hamiltonian formulation of paraxial optics and applications: study of gauge symmetries and the optical Spin Hall Effect. Phys Rev A 83:012110Google Scholar
  11. 11.
    Menard J, Mattacchione AE, Betz M, Van Driel HM (2009) Imaging the Spin Hall Effect of light inside semiconductors via absorption. Opt Lett 34:2312–2314CrossRefGoogle Scholar
  12. 12.
    Aiello A, Lindlein N, Marquardt C, Leuchs G (2009) Transverse angular momentum and geometric Spin Hall Effect of light. Phys Rev Lett 103:100401CrossRefGoogle Scholar
  13. 13.
    Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sensors Actuators B-chemical 54:3–15CrossRefGoogle Scholar
  14. 14.
    Kabashin AV, Evans P, Pastkovsky S, Hendren WR, Wurtz GA et al (2009) Plasmonic nanorod metamaterials for biosensing. Nat Mater 8:867–871CrossRefGoogle Scholar
  15. 15.
    Chen S, Lin C (2016) High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization. Optik 127:7514–7519CrossRefGoogle Scholar
  16. 16.
    Bliokh KY, Bekshaev A, Kofman AG, Nori F (2013) Photon trajectories, anomalous velocities and weak measurements: a classical interpretation. New J Phys 15:073022CrossRefGoogle Scholar
  17. 17.
    Qin Y, Li Y, He H, Gong Q (2009) Measurement of Spin Hall Effect of reflected light. Opt Lett 34:2551–2553CrossRefGoogle Scholar
  18. 18.
    Zhou X, Xiao Z, Luo H, Wen S (2011) Experimental observation of the Spin Hall Effect of light on a nano-metal film via weak measurements. Phys Rev A 85:043809Google Scholar
  19. 19.
    Luo H, Zhou X, Shu W, Wen S, Fan D (2011) Enhanced and switchable Spin Hall Effect of light near the Brewster angle on reflection. Phys Rev A 84:043806Google Scholar
  20. 20.
    Pan M, Li Y, Ren J, Wang B, Xiao Y et al (2013) Impact of in-plane spread of wave vectors on Spin Hall Effect of light around Brewster's angle. Appl Phys Lett 103:071106CrossRefGoogle Scholar
  21. 21.
    Zhou X, Ling X (2016) Enhanced photonic Spin Hall Effect due to surface Plasmon resonance. IEEE Photonics Journal 8:1–8Google Scholar
  22. 22.
    Tan X, Zhu X (2016) Enhancing photonic Spin Hall Effect via long-range surface plasmon resonance. Opt Lett 41:2478–2481CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Xing Jiang
    • 1
  • Qingkai Wang
    • 1
    • 2
  • Jun Guo
    • 1
  • Shuqing Chen
    • 1
  • Xiaoyu Dai
    • 1
  • Yuanjiang Xiang
    • 1
  1. 1.SZU-NUS Collaborative Innovation Center for Optoelectronic Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic EngineeringShenzhen UniversityShenzhenChina
  2. 2.College of Science, Key Laboratory for Microstructural Functional Materials of Jiangxi ProvinceJiujiang UniversityJiujiangChina

Personalised recommendations