, Volume 13, Issue 4, pp 1441–1448 | Cite as

Single-Mode to Multi-Mode Crossover in Thin-Load Polymethyl Methacrylate Plasmonic Waveguides

  • Malte GroßmannEmail author
  • Martin Thomaschewski
  • Alwin Klick
  • Arkadiusz Jarosław Goszczak
  • Elżbieta Karolina Sobolewska
  • Till Leißner
  • Jost Adam
  • Jacek Fiutowski
  • Horst-Günter Rubahn
  • Michael Bauer


Mode character and mode dispersion of sub-60-nm-thick polymethyl methacrylate dielectric-loaded surface plasmon-polariton waveguides (DLSPPWs) are investigated using photoemission electron microscopy and finite element method simulations. Experiment and simulation show excellent agreement and allow identifying a crossover from single-mode to multi-mode waveguiding as a function of excitation wavelength λ and DLSSPW cross section. Experiment and simulations yield, furthermore, indications for the formation of a surface plasmon-polariton cavity mode in the close vicinity of the waveguides.


Dielectric-loaded surface plasmon-polariton waveguides DLSPPW PMMA Photoemission electron microscopy Mode dispersion 



This work was funded by the German Research Foundation (DFG) through the Collaborative Research Center 677 “Function by Switching.”

Jacek Fiutowski, Jost Adam, and Till Leißner thank the Fabrikant Mads Clausen’s Foundation for a research grant supporting this work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    Charbonneau R, Berini P, Berolo E, Lisicka-Shrzek E (2000) Experimental observation of plasmon-polariton waves supported by a thin metal film of finite width. Opt Lett 25:844–846. CrossRefPubMedGoogle Scholar
  2. 2.
    Berini P (1999) Plasmon-polariton modes guided by a metal film of finite width. Opt Lett 24:1011–1013. CrossRefPubMedGoogle Scholar
  3. 3.
    Berini P (2000) Plasmon-polariton waves guided by thin lossy metal films of finite width: bound modes of symmetric structures. Phys Rev B 61:10484–10503. CrossRefGoogle Scholar
  4. 4.
    Pile DFP, Ogawa T, Gramotnev DK et al (2005) Two-dimensionally localized modes of a nanoscale gap plasmon waveguide. Appl Phys Lett 87:1–3. CrossRefGoogle Scholar
  5. 5.
    Tanaka K, Tanaka M, Katayama K (2008) Simulations of nanometric optical circuits by surface plasmon polariton gap waveguide. Math Methods Electromagn Theory, MMET, Conf Proc 1158:59–64. CrossRefGoogle Scholar
  6. 6.
    Davoyan AR, Shadrivov IV, Kivshar YS (2008) Nonlinear plasmonic slot waveguides. Opt Express 16:21209–21214. CrossRefPubMedGoogle Scholar
  7. 7.
    Gramotnev DK, Pile DFP (2004) Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface. Appl Phys Lett 85:6323. CrossRefGoogle Scholar
  8. 8.
    Bozhevolnyi SI, Volkov VS, Devaux E, Ebbesen TW (2005) Channel plasmon-polariton guiding by subwavelength metal grooves. Phys Rev Lett 95:1–4. CrossRefGoogle Scholar
  9. 9.
    Krenn JR, Lamprecht B, Ditlbacher H et al (2007) Non-diffraction-limited light transport by gold nanowires. Europhys Lett 60:663–669. CrossRefGoogle Scholar
  10. 10.
    Schider G, Krenn J, Hohenau a et al (2003) Plasmon dispersion relation of Au and Ag nanowires. Phys Rev B 68:1–4. CrossRefGoogle Scholar
  11. 11.
    Krenn JR (2003) Nanoparticle waveguides: watching energy transfer. Nat Mater 2:210–211. CrossRefPubMedGoogle Scholar
  12. 12.
    Leißner T, Lemke C, Jauernik S et al (2013) Surface plasmon polariton propagation in organic nanofiber based plasmonic waveguides. Opt Express 21:8251. CrossRefPubMedGoogle Scholar
  13. 13.
    Biagi G, Fiutowski J, Radko IP et al (2015) Compact wavelength add–drop multiplexers using Bragg gratings in coupled dielectric-loaded plasmonic waveguides. Opt Lett 40:2429. CrossRefPubMedGoogle Scholar
  14. 14.
    Zhang X-Y, Zhang T, A-M H et al (2011) Tunable microring resonator based on dielectric-loaded surface plasmon polariton waveguides. J Nanosci Nanotechnol 11:10520–10524. CrossRefPubMedGoogle Scholar
  15. 15.
    Krasavin AV, Zayats AV (2010) All-optical active components for dielectric-loaded plasmonic waveguides. Opt Commun 283:1581–1584. CrossRefGoogle Scholar
  16. 16.
    Chen JG, Zhang T, Zhu JS et al (2009) Low-loss planar optical waveguides fabricated from polycarbonate. Polym Eng Sci 49:2015–2019. CrossRefGoogle Scholar
  17. 17.
    Holmgaard T, Chen Z, Bozhevolnyi SI et al (2008) Bend- and splitting loss of dielectric-loaded surface plasmon-polariton waveguides. Opt Express 16:13585–13592. CrossRefPubMedGoogle Scholar
  18. 18.
    Steinberger B, Hohenau A, Ditlbacher H et al (2007) Dielectric stripes on gold as surface plasmon waveguides: bends and directional couplers. Appl Phys Lett 91:10–13. CrossRefGoogle Scholar
  19. 19.
    Holmgaard T, Bozhevolnyi SI (2007) Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides. Phys Rev B 75:245405. CrossRefGoogle Scholar
  20. 20.
    Leißner T, Lemke C, Fiutowski J et al (2013) Morphological tuning of the plasmon dispersion relation in dielectric-loaded nanofiber waveguides. Phys Rev Lett 111:46802. CrossRefGoogle Scholar
  21. 21.
    Leißner T, Thilsing-Hansen K, Lemke C et al (2012) Surface plasmon polariton emission prompted by organic nanofibers on thin gold films. Plasmonics 7:253–260. CrossRefGoogle Scholar
  22. 22.
    Holmgaard T, Chen Z, Bozhevolnyi SI et al (2009) Dielectric-loaded plasmonic waveguide-ring resonators. Opt Express 17:2968. CrossRefPubMedGoogle Scholar
  23. 23.
    Oulton RF, Sorger VJ, Genov DA et al (2008) A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation. Nat Photonics 2:496–500. CrossRefGoogle Scholar
  24. 24.
    Grandidier J, Massenot S, des Francs GC et al (2008) Dielectric-loaded surface plasmon polariton waveguides: figures of merit and mode characterization by image and Fourier plane leakage microscopy. Phys Rev B 245419:78. CrossRefGoogle Scholar
  25. 25.
    Swiech W, Fecher G, Ziethen C et al (1997) Recent progress in photoemission microscopy with emphasis on chemical and magnetic sensitivity. J Electron Spectros Relat Phenom 84:171–188. CrossRefGoogle Scholar
  26. 26.
    Johnstone RW, Foulds IG, Parameswaran M (2008) Deep-UV exposure of poly(methyl methacrylate) at 254 nm using low-pressure mercury vapor lamps. J Vac Sci Technol B Microelectron Nanom Struct 26:682. CrossRefGoogle Scholar
  27. 27.
    Lin BJ (1975) Deep uv lithography. J Vac Sci Technol 12:1317. doi:
  28. 28.
    Lemke C, Leißner T, Klick A et al (2013) The complex dispersion relation of surface plasmon polaritons at gold/para-hexaphenylene interfaces. Appl Phys B Lasers Opt 116:585–591. CrossRefGoogle Scholar
  29. 29.
    Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. CrossRefGoogle Scholar
  30. 30.
    Edelstein A, Amodaj N, Hoover K, et al (2010) Computer control of microscopes using μManager. Curr Protoc Mol Biol Chapter 14:Unit14.20. doi:
  31. 31.
    Joens MS, Huynh C, Kasuboski JM et al (2013) Helium ion microscopy (HIM) for the imaging of biological samples at sub-nanometer resolution. Sci Rep 3:3514. CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Kubo A, Pontius N, Petek H (2007) Femtosecond microscopy of surface plasmon polariton wave packet evolution at the silver/vacuum interface. Nano Lett 7:470–475. CrossRefPubMedGoogle Scholar
  33. 33.
    Klick A, de la Cruz S, Lemke C et al (2016) Amplitude and phase of surface plasmon polaritons excited at a step edge. Appl Phys B Lasers Opt 122:79. CrossRefGoogle Scholar
  34. 34.
    Kogelnik H, Ramaswamy V (1974) Scaling rules for thin-film optical waveguides. Appl Opt 13:1857–1862. CrossRefPubMedGoogle Scholar
  35. 35.
    Chang THP (1975) Proximity effect in electron-beam lithography. J Vac Sci Technol 12:1271–1275. CrossRefGoogle Scholar
  36. 36.
    Owen G, Rissman P (1983) Proximity effect correction for electron beam lithography by equalization of background dose. J Appl Phys 54:3573–3581. CrossRefGoogle Scholar
  37. 37.
    Owen G (1990) Methods for proximity effect correction in electron lithography. J Vac Sci Technol B Microelectron Nanom Struct 8:1889. CrossRefGoogle Scholar
  38. 38.
    Samardak A, Anisimova M, Samardak A, Ognev A (2015) Fabrication of high-resolution nanostructures of complex geometry by the single-spot nanolithography method. Beilstein J Nanotechnol 6:976–986. CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Weeber J-C, Hassan K, Saviot L et al (2012) Efficient photo-thermal activation of gold nanoparticle-doped polymer plasmonic switches. Opt Express 20:27636–27649. CrossRefPubMedGoogle Scholar
  40. 40.
    Welch PD (1967) The use of fast Fourier transform for the estimation of power spectra: a method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust 15:70–73. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Malte Großmann
    • 1
    Email author
  • Martin Thomaschewski
    • 2
  • Alwin Klick
    • 1
  • Arkadiusz Jarosław Goszczak
    • 3
  • Elżbieta Karolina Sobolewska
    • 3
  • Till Leißner
    • 3
  • Jost Adam
    • 3
  • Jacek Fiutowski
    • 3
  • Horst-Günter Rubahn
    • 3
  • Michael Bauer
    • 1
  1. 1.Institute of Experimental and Applied PhysicsUniversity of KielKielGermany
  2. 2.Mads Clausen Institute, Centre for Nano OpticsUniversity of Southern DenmarkOdenseDenmark
  3. 3.Mads Clausen Institute, NanoSYDUniversity of Southern DenmarkSønderborgDenmark

Personalised recommendations