Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1417–1423 | Cite as

An Analytic Approach to Nanofocusing with Pyramidal Horn Antennas

  • Shuwen Chen
  • Reuven Gordon
Article
  • 169 Downloads

Abstract

Horn antenna is one of the simplest even widely used antennas in the RF and microwave regimes. However, few systematic investigations on pyramidal horn antennas are found at optical frequency while optical antennas are extensively studied in various applications. Here, we investigate the feature of pyramidal horn nanoantennas and explore the mechanism of nanofocusing. Although the dimensions of antenna can be optimized through numerical simulations for the applications, it is inefficient due to the large degree of freedom of a horn antenna. Firstly, we analyze both the scattering loss and the dissipative loss during compressing electromagnetic waves in the horn antennas while the dimensions gradually decrease. Then, we establish an analytic and simple approach of mode matching, which is based on the effective index method, to efficiently squeeze light into arbitrarily small 3D nanospots. We numerically demonstrate that a nanofocusing spot of πλ 2/1200 at the wavelength of 785 nm with 1.2 dB losses is achieved by a pyramidal horn nanoantenna with the analytically determined dimensions. The intensity enhancement is further increased to more than 6000 times by introducing surface plasmon coupling at the input interface.

Keywords

Surface plasmons Subwavelength structures Nanofocusing Nanoantennas Pyramidal horn antennas 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (61605247).

References

  1. 1.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photon 5:83–90. doi: https://doi.org/10.1038/nphoton.2010.237 CrossRefGoogle Scholar
  2. 2.
    Schuller JA, Barnard ES, Cai W et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. doi: https://doi.org/10.1038/nmat2630 CrossRefGoogle Scholar
  3. 3.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. doi: https://doi.org/10.1038/nmat2629 CrossRefGoogle Scholar
  4. 4.
    Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702. doi: https://doi.org/10.1126/science.1203056 CrossRefGoogle Scholar
  5. 5.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748. doi: https://doi.org/10.1038/nphoton.2012.244 CrossRefGoogle Scholar
  6. 6.
    Lobanov SV, Weiss T, Dregely D et al (2012) Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array. Phys Rev B 85:155137. doi: https://doi.org/10.1103/PhysRevB.85.155137 CrossRefGoogle Scholar
  7. 7.
    Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1:438–483. doi: https://doi.org/10.1364/AOP.1.000438 CrossRefGoogle Scholar
  8. 8.
    Forestiere C, Handin A, Dal Negro L (2014) Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas. Plasmonics 9:715–725. doi: https://doi.org/10.1007/s11468-014-9691-6 CrossRefGoogle Scholar
  9. 9.
    Grosjean T, Mivelle M, Burr GW, Baida FI (2013) Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber. Opt Express 21:1762–1772. doi: https://doi.org/10.1364/OE.21.001762 CrossRefGoogle Scholar
  10. 10.
    Chen J, Fan W, Mao P et al (2016) Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing. Plasmonics 12:529–534. doi: https://doi.org/10.1007/s11468-016-0294-2 CrossRefGoogle Scholar
  11. 11.
    Le Moal E, Marguet S, Canneson D et al (2016) Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Phys Rev B 93:035418. doi: https://doi.org/10.1103/PhysRevB.93.035418 CrossRefGoogle Scholar
  12. 12.
    El-Toukhy YM, Hussein M, Hameed MFO, Obayya SSA (2017) Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications. Plasmonics 3:654. doi: https://doi.org/10.1007/s11468-017-0536-y Google Scholar
  13. 13.
    Gramotnev DK, Pors A, Willatzen M, Bozhevolnyi SI (2012) Gap-plasmon nanoantennas and bowtie resonators. Phys Rev B 85:045434. doi: https://doi.org/10.1103/PhysRevB.85.045434 CrossRefGoogle Scholar
  14. 14.
    Taminiau TH, Moerland RJ, Segerink FB et al (2007) λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33. doi: https://doi.org/10.1021/nl061726h CrossRefGoogle Scholar
  15. 15.
    Dregely D, Taubert R, Dorfmüller J et al (2011) 3D optical Yagi-Uda nanoantenna array. Nat Commun 2:267. doi: https://doi.org/10.1038/ncomms1268 CrossRefGoogle Scholar
  16. 16.
    Ni X, Emani NK, Kildishev AV et al (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427–427. doi: https://doi.org/10.1126/science.1214686 CrossRefGoogle Scholar
  17. 17.
    Bachman KA, Peltzer JJ, Flammer PD et al (2012) Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt Express 20:1308–1319. doi: https://doi.org/10.1364/OE.20.001308 CrossRefGoogle Scholar
  18. 18.
    Huang F, Yang H, Li S et al (2015) Tunable unidirectional coupling of surface plasmon polaritons utilizing a V-shaped slot nanoantenna column. Plasmonics 10:1825–1831. doi: https://doi.org/10.1007/s11468-015-9988-0 CrossRefGoogle Scholar
  19. 19.
    Esteban R, Teperik TV, Greffet JJ (2010) Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett 104:026802. doi: https://doi.org/10.1103/PhysRevLett.104.026802 CrossRefGoogle Scholar
  20. 20.
    Kuang D, Dong L, Cao Y (2016) Tuning of plasmonic nanofocusing with non-linear metallic helical nanocone. Plasmonics 12:685–690. doi: https://doi.org/10.1007/s11468-016-0314-2 CrossRefGoogle Scholar
  21. 21.
    Alinejad H, Massudi R (2014) Design and optimization of a 3D pyramidal nanowaveguide with a square cross-section for plasmonic field enhancement for high harmonic generation. Plasmonics 10:99–105. doi: https://doi.org/10.1007/s11468-014-9782-4 CrossRefGoogle Scholar
  22. 22.
    Alinejad H, Massudi R (2015) Optimization of plasmonic high harmonic generation in a 3D pyramidal nanowaveguide by tuning the aspect ratio of its rectangular cross section and chirp and polarization of femtosecond incident pulses. Appl Opt 54:3759–3763. doi: https://doi.org/10.1364/AO.54.003759 CrossRefGoogle Scholar
  23. 23.
    Balanis CA (2005) Antenna theory: analysis and design. John Wiley & Sons, HobokenGoogle Scholar
  24. 24.
    Gramotnev DK, Bozhevolnyi SI (2013) Nanofocusing of electromagnetic radiation. Nat Photon 8:13–22. doi: https://doi.org/10.1038/nphoton.2013.232 CrossRefGoogle Scholar
  25. 25.
    Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404. doi: https://doi.org/10.1103/PhysRevLett.93.137404 CrossRefGoogle Scholar
  26. 26.
    Gramotnev DK, Vogel MW (2011) Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing. Phys Lett A 375:3464–3468. doi: https://doi.org/10.1016/j.physleta.2011.07.053 CrossRefGoogle Scholar
  27. 27.
    Choo H, Kim M-K, Staffaroni M et al (2012) Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photonics 6:838–844. doi: https://doi.org/10.1038/nphoton.2012.277 CrossRefGoogle Scholar
  28. 28.
    Verhagen E, Spasenović M, Polman A, Kuipers LK (2009) Nanowire plasmon excitation by adiabatic mode transformation. Phys Rev Lett 102:203904. doi: https://doi.org/10.1103/PhysRevLett.102.203904 CrossRefGoogle Scholar
  29. 29.
    Chen S, Jin S, Gordon R (2014) Subdiffraction focusing enabled by a Fano resonance. Phys Rev X 4:031021. doi: https://doi.org/10.1103/PhysRevX.4.031021 Google Scholar
  30. 30.
    Govyadinov AA, Podolskiy VA (2006) Metamaterial photonic funnels for subdiffraction light compression and propagation. Phys Rev B 73:155108. doi: https://doi.org/10.1103/PhysRevB.73.155108 CrossRefGoogle Scholar
  31. 31.
    Gramotnev DK, Pile DFP, Vogel MW, Zhang X (2007) Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys Rev B 75:035431. doi: https://doi.org/10.1103/PhysRevB.75.035431 CrossRefGoogle Scholar
  32. 32.
    Issa NA, Guckenberger R (2006) Optical nanofocusing on tapered metallic waveguides. Plasmonics 2:31–37. doi: https://doi.org/10.1007/s11468-006-9022-7 CrossRefGoogle Scholar
  33. 33.
    Zhu B, Xiao S, Zhou L (2014) Optimum shape for metallic taper arrays to harvest light. Phys Rev B 90:045110. doi: https://doi.org/10.1103/PhysRevB.90.045110 CrossRefGoogle Scholar
  34. 34.
    Liu W (2015) Adiabatic nanofocusing of the fundamental modes in plasmonic parabolic potentials. Opt Commun 346:88–92. doi: https://doi.org/10.1016/j.optcom.2015.02.019 CrossRefGoogle Scholar
  35. 35.
    Zenin VA, Andryieuski A, Malureanu R et al (2015) Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett 15:8148–8154. doi: https://doi.org/10.1021/acs.nanolett.5b03593 CrossRefGoogle Scholar
  36. 36.
    Kim M-K, Sim H, Yoon SJ et al (2015) Squeezing photons into a point-like space. Nano Lett 15:4102–4107. doi: https://doi.org/10.1021/acs.nanolett.5b01204 CrossRefGoogle Scholar
  37. 37.
    Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2009) Modal analysis and coupling in metal-insulator-metal waveguides. Phys Rev B 79:035120. doi: https://doi.org/10.1103/PhysRevB.79.035120 CrossRefGoogle Scholar
  38. 38.
    Gordon R (2006) Light in a subwavelength slit in a metal: propagation and reflection. Phys Rev B 73:153405. doi: https://doi.org/10.1103/PhysRevB.73.153405 CrossRefGoogle Scholar
  39. 39.
    Gordon R, Brolo A (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938. doi: https://doi.org/10.1364/OPEX.13.001933 CrossRefGoogle Scholar
  40. 40.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. doi: https://doi.org/10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  41. 41.
    Kumar A, Clark DF, Culshaw B (1988) Explanation of errors inherent in the effective-index method for analyzing rectangular-core waveguides. Opt Lett 13:1129–1131. doi: https://doi.org/10.1364/OL.13.001129 CrossRefGoogle Scholar
  42. 42.
    Kumar A, Srivastava T (2008) Modeling of a nanoscale rectangular hole in a real metal. Opt Lett 33:333–335. doi: https://doi.org/10.1364/OL.33.000333 CrossRefGoogle Scholar
  43. 43.
    Kumar A, Srivastava T (2008) Performance of the effective index method in the modeling of nanoscale rectangular apertures in a real metal. Opt Commun 281:4526–4529. doi: https://doi.org/10.1016/j.optcom.2008.04.040 CrossRefGoogle Scholar
  44. 44.
    Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propagat 52:397–407. doi: https://doi.org/10.1109/TAP.2004.823969 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Information and CommunicationsNational University of Defense TechnologyXi’anChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations