, Volume 13, Issue 4, pp 1417–1423 | Cite as

An Analytic Approach to Nanofocusing with Pyramidal Horn Antennas

  • Shuwen ChenEmail author
  • Reuven Gordon


Horn antenna is one of the simplest even widely used antennas in the RF and microwave regimes. However, few systematic investigations on pyramidal horn antennas are found at optical frequency while optical antennas are extensively studied in various applications. Here, we investigate the feature of pyramidal horn nanoantennas and explore the mechanism of nanofocusing. Although the dimensions of antenna can be optimized through numerical simulations for the applications, it is inefficient due to the large degree of freedom of a horn antenna. Firstly, we analyze both the scattering loss and the dissipative loss during compressing electromagnetic waves in the horn antennas while the dimensions gradually decrease. Then, we establish an analytic and simple approach of mode matching, which is based on the effective index method, to efficiently squeeze light into arbitrarily small 3D nanospots. We numerically demonstrate that a nanofocusing spot of πλ 2/1200 at the wavelength of 785 nm with 1.2 dB losses is achieved by a pyramidal horn nanoantenna with the analytically determined dimensions. The intensity enhancement is further increased to more than 6000 times by introducing surface plasmon coupling at the input interface.


Surface plasmons Subwavelength structures Nanofocusing Nanoantennas Pyramidal horn antennas 



This work was supported by the National Natural Science Foundation of China (61605247).


  1. 1.
    Novotny L, van Hulst N (2011) Antennas for light. Nat Photon 5:83–90. doi: CrossRefGoogle Scholar
  2. 2.
    Schuller JA, Barnard ES, Cai W et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204. doi: CrossRefPubMedGoogle Scholar
  3. 3.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213. doi: CrossRefPubMedGoogle Scholar
  4. 4.
    Knight MW, Sobhani H, Nordlander P, Halas NJ (2011) Photodetection with active optical antennas. Science 332:702. doi: CrossRefPubMedGoogle Scholar
  5. 5.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photonics 6:737–748. doi: CrossRefGoogle Scholar
  6. 6.
    Lobanov SV, Weiss T, Dregely D et al (2012) Emission properties of an oscillating point dipole from a gold Yagi-Uda nanoantenna array. Phys Rev B 85:155137. doi: CrossRefGoogle Scholar
  7. 7.
    Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photon 1:438–483. doi: CrossRefGoogle Scholar
  8. 8.
    Forestiere C, Handin A, Dal Negro L (2014) Enhancement of molecular fluorescence in the UV spectral range using aluminum nanoantennas. Plasmonics 9:715–725. doi: CrossRefGoogle Scholar
  9. 9.
    Grosjean T, Mivelle M, Burr GW, Baida FI (2013) Optical horn antennas for efficiently transferring photons from a quantum emitter to a single-mode optical fiber. Opt Express 21:1762–1772. doi: CrossRefPubMedGoogle Scholar
  10. 10.
    Chen J, Fan W, Mao P et al (2016) Tailoring plasmon lifetime in suspended nanoantenna arrays for high-performance plasmon sensing. Plasmonics 12:529–534. doi: CrossRefGoogle Scholar
  11. 11.
    Le Moal E, Marguet S, Canneson D et al (2016) Engineering the emission of light from a scanning tunneling microscope using the plasmonic modes of a nanoparticle. Phys Rev B 93:035418. doi: CrossRefGoogle Scholar
  12. 12.
    El-Toukhy YM, Hussein M, Hameed MFO, Obayya SSA (2017) Characterization of asymmetric tapered dipole nanoantenna for energy harvesting applications. Plasmonics 3:654. doi: CrossRefGoogle Scholar
  13. 13.
    Gramotnev DK, Pors A, Willatzen M, Bozhevolnyi SI (2012) Gap-plasmon nanoantennas and bowtie resonators. Phys Rev B 85:045434. doi: CrossRefGoogle Scholar
  14. 14.
    Taminiau TH, Moerland RJ, Segerink FB et al (2007) λ/4 resonance of an optical monopole antenna probed by single molecule fluorescence. Nano Lett 7:28–33. doi: CrossRefPubMedGoogle Scholar
  15. 15.
    Dregely D, Taubert R, Dorfmüller J et al (2011) 3D optical Yagi-Uda nanoantenna array. Nat Commun 2:267. doi: CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Ni X, Emani NK, Kildishev AV et al (2012) Broadband light bending with plasmonic nanoantennas. Science 335:427–427. doi: CrossRefPubMedGoogle Scholar
  17. 17.
    Bachman KA, Peltzer JJ, Flammer PD et al (2012) Spiral plasmonic nanoantennas as circular polarization transmission filters. Opt Express 20:1308–1319. doi: CrossRefPubMedGoogle Scholar
  18. 18.
    Huang F, Yang H, Li S et al (2015) Tunable unidirectional coupling of surface plasmon polaritons utilizing a V-shaped slot nanoantenna column. Plasmonics 10:1825–1831. doi: CrossRefGoogle Scholar
  19. 19.
    Esteban R, Teperik TV, Greffet JJ (2010) Optical patch antennas for single photon emission using surface plasmon resonances. Phys Rev Lett 104:026802. doi: CrossRefPubMedGoogle Scholar
  20. 20.
    Kuang D, Dong L, Cao Y (2016) Tuning of plasmonic nanofocusing with non-linear metallic helical nanocone. Plasmonics 12:685–690. doi: CrossRefGoogle Scholar
  21. 21.
    Alinejad H, Massudi R (2014) Design and optimization of a 3D pyramidal nanowaveguide with a square cross-section for plasmonic field enhancement for high harmonic generation. Plasmonics 10:99–105. doi: CrossRefGoogle Scholar
  22. 22.
    Alinejad H, Massudi R (2015) Optimization of plasmonic high harmonic generation in a 3D pyramidal nanowaveguide by tuning the aspect ratio of its rectangular cross section and chirp and polarization of femtosecond incident pulses. Appl Opt 54:3759–3763. doi: CrossRefGoogle Scholar
  23. 23.
    Balanis CA (2005) Antenna theory: analysis and design. John Wiley & Sons, HobokenGoogle Scholar
  24. 24.
    Gramotnev DK, Bozhevolnyi SI (2013) Nanofocusing of electromagnetic radiation. Nat Photon 8:13–22. doi: CrossRefGoogle Scholar
  25. 25.
    Stockman MI (2004) Nanofocusing of optical energy in tapered plasmonic waveguides. Phys Rev Lett 93:137404. doi: CrossRefPubMedGoogle Scholar
  26. 26.
    Gramotnev DK, Vogel MW (2011) Ultimate capabilities of sharp metal tips for plasmon nanofocusing, near-field trapping and sensing. Phys Lett A 375:3464–3468. doi: CrossRefGoogle Scholar
  27. 27.
    Choo H, Kim M-K, Staffaroni M et al (2012) Nanofocusing in a metal-insulator-metal gap plasmon waveguide with a three-dimensional linear taper. Nat Photonics 6:838–844. doi: CrossRefGoogle Scholar
  28. 28.
    Verhagen E, Spasenović M, Polman A, Kuipers LK (2009) Nanowire plasmon excitation by adiabatic mode transformation. Phys Rev Lett 102:203904. doi: CrossRefPubMedGoogle Scholar
  29. 29.
    Chen S, Jin S, Gordon R (2014) Subdiffraction focusing enabled by a Fano resonance. Phys Rev X 4:031021. doi: CrossRefGoogle Scholar
  30. 30.
    Govyadinov AA, Podolskiy VA (2006) Metamaterial photonic funnels for subdiffraction light compression and propagation. Phys Rev B 73:155108. doi: CrossRefGoogle Scholar
  31. 31.
    Gramotnev DK, Pile DFP, Vogel MW, Zhang X (2007) Local electric field enhancement during nanofocusing of plasmons by a tapered gap. Phys Rev B 75:035431. doi: CrossRefGoogle Scholar
  32. 32.
    Issa NA, Guckenberger R (2006) Optical nanofocusing on tapered metallic waveguides. Plasmonics 2:31–37. doi: CrossRefGoogle Scholar
  33. 33.
    Zhu B, Xiao S, Zhou L (2014) Optimum shape for metallic taper arrays to harvest light. Phys Rev B 90:045110. doi: CrossRefGoogle Scholar
  34. 34.
    Liu W (2015) Adiabatic nanofocusing of the fundamental modes in plasmonic parabolic potentials. Opt Commun 346:88–92. doi: CrossRefGoogle Scholar
  35. 35.
    Zenin VA, Andryieuski A, Malureanu R et al (2015) Boosting local field enhancement by on-chip nanofocusing and impedance-matched plasmonic antennas. Nano Lett 15:8148–8154. doi: CrossRefPubMedGoogle Scholar
  36. 36.
    Kim M-K, Sim H, Yoon SJ et al (2015) Squeezing photons into a point-like space. Nano Lett 15:4102–4107. doi: CrossRefPubMedGoogle Scholar
  37. 37.
    Kocabaş ŞE, Veronis G, Miller DAB, Fan S (2009) Modal analysis and coupling in metal-insulator-metal waveguides. Phys Rev B 79:035120. doi: CrossRefGoogle Scholar
  38. 38.
    Gordon R (2006) Light in a subwavelength slit in a metal: propagation and reflection. Phys Rev B 73:153405. doi: CrossRefGoogle Scholar
  39. 39.
    Gordon R, Brolo A (2005) Increased cut-off wavelength for a subwavelength hole in a real metal. Opt Express 13:1933–1938. doi: CrossRefPubMedGoogle Scholar
  40. 40.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. doi: CrossRefGoogle Scholar
  41. 41.
    Kumar A, Clark DF, Culshaw B (1988) Explanation of errors inherent in the effective-index method for analyzing rectangular-core waveguides. Opt Lett 13:1129–1131. doi: CrossRefPubMedGoogle Scholar
  42. 42.
    Kumar A, Srivastava T (2008) Modeling of a nanoscale rectangular hole in a real metal. Opt Lett 33:333–335. doi: CrossRefPubMedGoogle Scholar
  43. 43.
    Kumar A, Srivastava T (2008) Performance of the effective index method in the modeling of nanoscale rectangular apertures in a real metal. Opt Commun 281:4526–4529. doi: CrossRefGoogle Scholar
  44. 44.
    Robinson J, Rahmat-Samii Y (2004) Particle swarm optimization in electromagnetics. IEEE Trans Antennas Propagat 52:397–407. doi: CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Information and CommunicationsNational University of Defense TechnologyXi’anChina
  2. 2.Department of Electrical and Computer EngineeringUniversity of VictoriaVictoriaCanada

Personalised recommendations