Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1393–1402 | Cite as

An Optically-Triggered Switchable Mid-Infrared Perfect Absorber Based on Phase-Change Material of Vanadium Dioxide

  • Ximin Tian
  • Zhi-Yuan Li
Article
  • 350 Downloads

Abstract

Switchable nanoscale devices can be implemented in heterostructures that integrate plasmonic nanostructures with functional active materials and hence hold great potential for nanoscale-integrated circuits. The phase-change material of vanadium dioxide (VO2) has reversibly switchable optical/electrical properties and huge contrast in its refractive index in the infrared spectral range between insulator and metallic states. In this work, we numerically demonstrate all-optical manipulation of switchable absorption effect using the heterostructure incorporating the plasmonic resonance of Au nanoantennas with vanadium dioxide. Compared with the planar control device (without Au nanoantennas), the proposed design exhibits a pronounced resonant field enhancement as well as polarization-insensitive and omnidirectional absorption response. Meanwhile, the proposed device shows a large switching contrast (from ~ 99.9 to ~ 10% in absorption efficiency) at the mid-infrared wavelength of 3609 nm. Interestingly, the resonance of the proposed device can be continuously tuned by varying the side length of the antennas or governing the metallization level of vanadium dioxide layer. The photothermal mechanism is further investigated by numerical model calculations, indicating that the resonant, antenna-mediated local heating occurs on a sub-nanosecond time scale of 0.26 ns under a quite low incident intensity of 1.9 × 106 W/m2, which is about 12.5 times reduced with respect to that of control device. Therefore, the hybrid strategy of plasmonic antennas and vanadium dioxide provides a conceptual framework of switchable metamaterials for actively steering in ultrafast, energy-efficient electronic and photonic devices.

Keywords

Phase-change material Vanadium dioxide All-optical manipulation Switchable absorption effect Photothermal mechanism 

Notes

Acknowledgements

This work is supported by the 973 Program of China at No. 2013CB632704, the National Natural Science Foundation of China at No. 11434017, and Guangdong Innovative and Entrepreneurial Research Team Program (No. 2016ZT06C594).

References

  1. 1.
    Zheludev NI, Kivshar YS (2012) From metamaterials to metadevices. Nat Mater 11:917–924CrossRefGoogle Scholar
  2. 2.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  3. 3.
    Lal S, Link S, Halas NJ (2007) Nano-optics from sensing to waveguiding. Nat Photonics 1:641–648CrossRefGoogle Scholar
  4. 4.
    Neubrech F, Pucci A, Cornelius TW, Karim S, García-Etxarri A, Aizpurua J (2008) Resonant plasmonic and vibrational coupling in a tailored nanoantenna for infrared detection. Phys Rev Lett 101:157403CrossRefGoogle Scholar
  5. 5.
    Bharadwaj P, Deutsch B, Novotny L (2009) Optical antennas. Adv Opt Photonics 1:438–483CrossRefGoogle Scholar
  6. 6.
    Adato R, Yanik AA, Amsden JJ, Kaplan DL, Omenetto FG, Hong MK, Erramilli S, Altug H (2009) Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc Natl Acad Sci 106:19227–19232CrossRefGoogle Scholar
  7. 7.
    Zhu H, Yi F, Cubukcu E (2016) Plasmonic metamaterial absorber for broadband manipulation of mechanical resonances. Nat Photon 10:709–714CrossRefGoogle Scholar
  8. 8.
    Mulla B, Sabah C (2016) Multiband metamaterial absorber design based on plasmonic resonances for solar energy harvesting. Plasmonics 5:1313–1321CrossRefGoogle Scholar
  9. 9.
    Wu D, Li R, Liu Y, Yu Z, Yu L, Chen L, Liu C, Ma R, Ye H (2017) Ultra-narrow band perfect absorber and its application as Plasmonic sensor in the visible region. Nanoscale ResLett 12:427CrossRefGoogle Scholar
  10. 10.
    Lu JY, Nam SH, Wilke K, Raza A, Lee YE, AlGhaferi A, Fang NX, Zhang T (2016) Localized surface Plasmon-enhanced ultrathin film broadband Nanoporous absorbers. Adv Opt Mater 4:1255–1264CrossRefGoogle Scholar
  11. 11.
    Muskens OL, Bergamini L, Wang Y, Gaskell JM, Zabala N, De Groot C, Sheel DW, Aizpurua J (2016) Antenna-assisted picosecond control of nanoscale phase transition in vanadium dioxide. Light: Sci Appl 5:e16173CrossRefGoogle Scholar
  12. 12.
    Tittl A, Michel AKU, Schäferling M, Yin X, Gholipour B, Cui L, Wuttig M, Taubner T, Neubrech F, Giessen H (2015) A switchable mid-infrared plasmonic perfect absorber with multispectral thermal imaging capability. Adv Mater 27:4597–4603CrossRefGoogle Scholar
  13. 13.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRefGoogle Scholar
  14. 14.
    Aydin K, Ferry VE, Briggs RM, Atwater HA (2011) Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat Commun 2:517CrossRefGoogle Scholar
  15. 15.
    Hao J, Wang J, Liu X, Padilla WJ, Zhou L, Qiu M (2010) High performance optical absorber based on a plasmonic metamaterial. Appl Phys Lett 96:251104CrossRefGoogle Scholar
  16. 16.
    Zhou H, Ding F, Jin Y, He S (2011) Terahertz metamaterial modulators based on absorption. Prog Electromagn Res 119:449–460CrossRefGoogle Scholar
  17. 17.
    Cox, J. D.; de Abajo, F. J. G. (2014) Electrically tunable nonlinear plasmonics in graphene nanoislands. Nat Commun 5:5725Google Scholar
  18. 18.
    Ruppert C, Förster F, Zrenner A, Kinzel JRB, Wixforth A, Krenner HJ, Betz M (2014) Radio frequency electromechanical control over a surface plasmon polariton coupler. ACS Photonics 1:91–95CrossRefGoogle Scholar
  19. 19.
    Schiefele J, Pedrós J, Sols F, Calle F, Guinea F (2013) Coupling light into graphene plasmons through surface acoustic waves. Phys Rev Lett 111:237405CrossRefGoogle Scholar
  20. 20.
    Rotenberg N, Betz M, van Driel HM (2008) Ultrafast control of grating-assisted light coupling to surface plasmons. Opt Lett 33:2137–2139CrossRefGoogle Scholar
  21. 21.
    MacDonald KF, Sámson ZL, Stockman MI, Zheludev NI (2009) Ultrafast active plasmonics. Nat Photonics 3:55–58CrossRefGoogle Scholar
  22. 22.
    Wu B, Xu X, Wang C (2016) Active gratings tuned by thermoplasmonics-induced phase transition in vanadium dioxide thin films. Opt Lett 41:5768–5771CrossRefGoogle Scholar
  23. 23.
    Chen Y, Li X, Luo X, Maier SA, Hong M (2015) Tunable near-infrared plasmonic perfect absorber based on phase-change materials. Photon. Res. 3:54–57CrossRefGoogle Scholar
  24. 24.
    Tian X, Li Z-Y (2016) Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photon Res 4:146–152CrossRefGoogle Scholar
  25. 25.
    Lei DY, Appavoo K, Ligmajer F, Sonnefraud Y, Haglund RF Jr, Maier SA (2015) Optically-triggered nanoscale memory effect in a hybrid plasmonic-phase changing nanostructure. ACS Photon 2:1306–1313CrossRefGoogle Scholar
  26. 26.
    Wuttig M, Yamada N (2007) Phase-change materials for rewriteable data storage. Nat Mater 6:824–832CrossRefGoogle Scholar
  27. 27.
    Wei J, Wang Z, Chen W, Cobden DH (2009) New aspects of the metal–insulator transition in single-domain vanadium dioxide nanobeams. Nat Nanotech 4:420–424CrossRefGoogle Scholar
  28. 28.
    Qazilbash MM, Li Z, Podzorov V, Brehm M, Keilmann F, Chae B, Kim H-T, Basov D (2008) Electrostatic modification of infrared response in gated structures based on VO2. Appl Phys Lett 92(24):241906CrossRefGoogle Scholar
  29. 29.
    Liu L, Kang L, Mayer TS, Werner DH (2016) Hybrid metamaterials for electrically triggered multifunctional control. Nat Commun 7:13236CrossRefGoogle Scholar
  30. 30.
    Appavoo K, Wang B, Brady NF, Seo M, Nag J, Prasankumar RP, Hilton DJ, Pantelides ST, Haglund RF Jr (2014) Ultrafast phase transition via catastrophic phonon collapse driven by plasmonic hot-electron injection. Nano Lett 14:1127–1133CrossRefGoogle Scholar
  31. 31.
    Cao T, Wei C-W, Simpson RE, Zhang L, Cryan MJ (2014) Broadband polarization-independent perfect absorber using a phase-change metamaterial at visible frequencies. Sci Rep 4:3955CrossRefGoogle Scholar
  32. 32.
    Dicken MJ, Aydin K, Pryce IM, Sweatlock LA, Boyd EM, Walavalkar S, Ma J, Atwater HA (2009) Frequency tunable near-infrared metamaterials based on VO2 phase transition. Opt Express 17:18330–18339CrossRefGoogle Scholar
  33. 33.
    Beebe M, Wang L, Madaras S, Klopf J, Li Z, Brantley D, Heimburger M, Wincheski R, Kittiwatanakul S, Lu J (2015) Surface plasmon resonance modulation in nanopatterned au gratings by the insulator-metal transition in vanadium dioxide films. Opt Express 23:13222–13229CrossRefGoogle Scholar
  34. 34.
    Kats MA, Blanchard R, Genevet P, Yang Z, Qazilbash MM, Basov D, Ramanathan S, Capasso F (2013) Thermal tuning of mid-infrared plasmonic antenna arrays using a phase change material. Opt Lett 38:368–370CrossRefGoogle Scholar
  35. 35.
    Thompson ZJ, Stickel A, Jeong Y-G, Han S, Son BH, Paul MJ, Lee B, Mousavian A, Seo G, Kim H-T (2015) Terahertz-triggered phase transition and hysteresis narrowing in a nanoantenna patterned vanadium dioxide film. Nano Lett 15:5893–5898CrossRefGoogle Scholar
  36. 36.
    Liu M, Hwang HY, Tao H, Strikwerda AC, Fan K, Keiser GR, Sternbach AJ, West KG, Kittiwatanakul S, Lu J (2012) Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial. Nature 487:345–348CrossRefGoogle Scholar
  37. 37.
    Hoque MNF, Karaoglan-Bebek G, Holtz M, Bernussi AA, Fan Z (2015) High performance spatial light modulators for terahertz applications. Opt Commun 350:309–314CrossRefGoogle Scholar
  38. 38.
    Carrillo SG-C, Nash GR, Hayat H, Cryan MJ, Klemm M, Bhaskaran H, Wright CD (2016) Design of practicable phase-change metadevices for near-infrared absorber and modulator applications. Opt Express 24:13563–13573CrossRefGoogle Scholar
  39. 39.
    Wang H, Yang Y, Wang L (2014) Switchable wavelength-selective and diffuse metamaterial absorber/emitter with a phase transition spacer layer. Appl. Phys, Lett 105:071907CrossRefGoogle Scholar
  40. 40.
    Kocer H, Butun S, Palacios E, Liu Z, Tongay S, Fu D, Wang K, Wu J, Aydin K (2015) Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films. Sci Rep 5:13384CrossRefGoogle Scholar
  41. 41.
    Appavoo K, Haglund RF Jr (2014) Polarization selective phase-change nanomodulator. Sci. Rep 4:6771CrossRefGoogle Scholar
  42. 42.
    Chettiar UK, Engheta N (2015) Modeling vanadium dioxide phase transition due to continuous-wave optical signals. Opt Express 23:445–451CrossRefGoogle Scholar
  43. 43.
    Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo I-C, Chen S, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19:15221–15228CrossRefGoogle Scholar
  44. 44.
    Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  45. 45.
    Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557CrossRefGoogle Scholar
  46. 46.
    Lee H, Wu J (2012) A wide-angle dual-band infrared perfect absorber based on metal–dielectric–metal split square-ring and square array. J Phys D Appl Phys 45:205101CrossRefGoogle Scholar
  47. 47.
    Ma W, Wen Y, Yu X (2013) Broadband metamaterial absorber at mid-infrared using multiplexed cross resonators. Opt Express 21:30724–30730CrossRefGoogle Scholar
  48. 48.
    Cheng C-W, Abbas MN, Chiu C-W, Lai K-T, Shih M-H, Chang Y-C (2012) Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt Express 20:10376–10381CrossRefGoogle Scholar
  49. 49.
    Bai Y, Zhao L, Ju D, Jiang Y, Liu L (2015) Wide-angle, polarization-independent and dual-band infrared perfect absorber based on L-shaped metamaterial. Opt Express 23:8670–8680CrossRefGoogle Scholar
  50. 50.
    Shibuya K, Kawasaki M, Tokura Y (2010) Metal-insulator transition in epitaxial V1-xWxO2 (0<= x<= 0.33) thin films. Appl Phys Lett 96:2102CrossRefGoogle Scholar
  51. 51.
    Voshchinnikov NV, Videen G, Henning T (2007) Effective medium theories for irregular fluffy structures: aggregation of small particles. Appl Opt 46:4065–4072CrossRefGoogle Scholar
  52. 52.
    Hosseini P, Wright CD, Bhaskaran H (2014) An optoelectronic framework enabled by low-dimensional phase-change films. Nature 511:206–211CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Laboratory of Optical Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.School of Physics and OptoelectronicsSouth China University of TechnologyGuangzhouChina

Personalised recommendations