Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1387–1392 | Cite as

Design of a Structured Bulk Plasmon Illumination Source for Enhancing Plasmonic Cavity Superlens Imaging

  • Wenjuan Du
  • Weijie Kong
  • Hongchao Liu
  • Kaipeng Liu
  • Changtao Wang
  • Xiangang Luo
Article
  • 106 Downloads

Abstract

A structured bulk plasmon illumination (BPI) source is designed for achieving a uniform high spatial frequency illumination field. By employing the hyperbolic metamaterial (HMM) composed of alternatively stacked metal and dielectric nanolayers, the deep subwavelength bulk plasmon polaritons (BPPs) can be launched. The obtained BPP modes are then utilized as a structured illumination source for improving the imaging resolution. More importantly, the BPI intensity can be improved remarkably by adding an extra Ag layer to the original BPI source. When two nano-slits are illuminated by the BPI source, the imaging resolution of plasmonic cavity superlens is improved obviously. Especially, after adding an extra Ag layer to the original BPI source, one can find the obvious improvement of the image contrast. The proposed BPI source promises some potential in near-field super resolution lithography.

Keywords

Bulk plasmon illumination Cavity superlens Hyperbolic metamaterial 

Notes

Acknowledgments

This work was supported by 973 Program of China (No. 2013CBA01700) and the National Natural Science Foundation of China (Nos. 61505217, 61575204).

Reference

  1. 1.
    Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969CrossRefGoogle Scholar
  2. 2.
    Fang N, Zhang X (2003) Imaging properties of a metamaterial superlens. Appl Phys Lett 82:161–163CrossRefGoogle Scholar
  3. 3.
    Fang N, Lee H, Sun C, Zhang X (2005) Sub-diffraction-limited optical imaging with a silver superlens. Science 308:534–537CrossRefGoogle Scholar
  4. 4.
    Liu Z, Fang N, Yen TJ, Zhang X (2003) Rapid growth of evanescent wave by a silver superlens. Appl Phys Lett 83:5184–5186CrossRefGoogle Scholar
  5. 5.
    Luo XG, Ishihara T (2004) Surface plasmon resonant interference nanolithography technique. Appl Phys Lett 84:4780–4782CrossRefGoogle Scholar
  6. 6.
    Luo XG, Ishihara T (2004) Subwavelength photolithography based on surface-plasmon polariton resonance. Opt Express 12:3055–3065CrossRefGoogle Scholar
  7. 7.
    Melvlle DOS, Blaikie RJ (2005) Super-resolution imaging through a planar silver layer. Opt Express 13:2127–2134CrossRefGoogle Scholar
  8. 8.
    Shao DB, Chen SC (2008) Surface plasmon assisted contact scheme nanoscale photolithography. J Vac Sci Technol B 26:227–231CrossRefGoogle Scholar
  9. 9.
    Liu H, Wang B, Ke L, Deng J, Chum CC, Teo SL, Shen L, Maier SA, Teng JH (2012) High aspect subdiffraction-limit photolithography via a silver superlens. Nano Lett 12:1549–1554CrossRefGoogle Scholar
  10. 10.
    Luo X (2015) Principles of electromagnetic waves in metasurfaces. Sci China-Phys Mech Astron 58:594201CrossRefGoogle Scholar
  11. 11.
    Pu M, Ma X, Li X, Guo Y, Luo X (2017) Merging plasmonics and metamaterials by two-dimensional subwavelength structures. J Mater Chem C 5:4361CrossRefGoogle Scholar
  12. 12.
    Liu L, Gao P, Liu K, Kong W, Zhao Z, Pu M, Wang C, Luo X (2017) Nanofocusing of circularly polarized Bessel-type plasmon polaritons with hyperbolic metamaterials. Mater Horiz 4:290–296CrossRefGoogle Scholar
  13. 13.
    Jiang Y, Wang HY, Wang H, Gao BR, Hao Y, Jin Y, Chen QD, Sun HB (2011) Surface plasmon enhanced fluorescence of dye molecules on metal grating films. J Phys Chem C 115:12636–12642CrossRefGoogle Scholar
  14. 14.
    Lin J, Dellinger J, Genevet P, Cluzel B, Fornel F, Capasso F (2012) Cosine-Gauss plasmon beam: a localized long-range nondiffracting surface wave. Phys Rev Lett 109:093904CrossRefGoogle Scholar
  15. 15.
    Xu F, Chen G, Wang C, Cao B, Lou Y (2013) Superlens imaging with a surface plasmon polariton cavity in imaging space. Opt Lett 38:3819–3822CrossRefGoogle Scholar
  16. 16.
    Wang Y, Yao N, Zhang W, He J, Wang C, Wang Y, Zhao Z, Luo X (2015) Forming sub-32-nm high-aspect plasmonic spot via bowtie aperture combined with metal-insulator-metal scheme. Plasmonics 10:1607–1613CrossRefGoogle Scholar
  17. 17.
    Gao P, Yao N, Wang CT, Zhao ZY, Luo YF, Wang YQ, Gao GH, Liu KP, Zhao CW, Luo XG (2015) Enhancing aspect profile of half-pitch 32 nm and 22 nm lithography with plasmonic cavity lens. Appl Phys Lett 106:093110CrossRefGoogle Scholar
  18. 18.
    Zhang W, Wang H, Wang CT, Yao N, Zhao ZY, Wang YQ, Gao P, Luo YF, Du WJ, Jiang B, Luo XG (2014) Elongating the air working distance of near-field plasmonic lens by surface plasmon illumination. Plasmonics 10:51–56CrossRefGoogle Scholar
  19. 19.
    Zhao Z, Luo Y, Zhang W, Wang CT, Gao P, Wang YQ, Pu MB, Yao N, Zhao CW, Luo XG (2015) Going far beyond the near-field diffraction limit via plasmonic cavity lens with high spatial frequency spectrum off-axis illumination. Sci Rep 5:15320CrossRefGoogle Scholar
  20. 20.
    Yao N, Wang CT, Tao X, Wang YQ, Zhao ZY, Luo XG (2013) Sub-diffraction phase-contrast imaging of transparent nano-objects by plasmonic lens structure. Nanotechnology 24:135203CrossRefGoogle Scholar
  21. 21.
    Xiao M (1996) A study of resolution limit in optical microscopy: near and far field. Opt Commun 132:403–409CrossRefGoogle Scholar
  22. 22.
    Xiao M (1997) Two-point optical resolution with homogeneous, evanescent and self field: resolution criterion in near field imaging. J Mod Opt 44:1609–1615CrossRefGoogle Scholar
  23. 23.
    Sreekanth KV, De Luca A, Strangi G (2013) Experimental demonstration of surface and bulk plasmon polaritons in hypergratings. Sci Rep 3:3291CrossRefGoogle Scholar
  24. 24.
    Kong W, Du W, Liu K, Wang C, Liu L, Zhao Z, Luo X (2016) Launching deep subwavelength bulk plasmon polaritons through hyperbolic metamaterials for surface imaging with tuneable ultra-short illumination depth. Nanoscale 8(38):17030CrossRefGoogle Scholar
  25. 25.
    Kidwai O, Zhukovsky SV, Sipe JE (2012) Effective-medium approach to planar multilayer hyperbolic metamaterials: Strengths and limitations. Phys Rev A 85:053842Google Scholar
  26. 26.
    Ramakrishna SA, Pendry JB, Wiltshire M, Stewart W (2003) Imaging the near field. J Mod Opt 50:1419–1430CrossRefGoogle Scholar
  27. 27.
    Yang J et al (2010) Cancellation of reflection and transmission at metamaterial surfaces. Opt Lett 35:16–18CrossRefGoogle Scholar
  28. 28.
    Schilling J (2006) Uniaxial metallo-dielectric metamaterials with scalar positive permeability. Phys Rev E 74:046618CrossRefGoogle Scholar
  29. 29.
    Wood B, Pendry J, Tsai D (2006) Directed subwavelength imaging using a layered metal-dielectric system. Phys Rev B 74:115116CrossRefGoogle Scholar
  30. 30.
    Gao P, Li X, Zhao Z, Ma X, Pu M, Wang C, Luo X (2017) Pushing the plasmonic imaging nanolithography to nano-manufacturing. Opt Commun. doi: 10.1016/j.optcom.2017.06.059 

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Wenjuan Du
    • 1
    • 2
  • Weijie Kong
    • 1
  • Hongchao Liu
    • 1
    • 2
  • Kaipeng Liu
    • 1
  • Changtao Wang
    • 1
  • Xiangang Luo
    • 1
  1. 1.State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and ElectronicsChinese Academy of SciencesChengduChina
  2. 2.University of Chinese Academy of SciencesBeijingChina

Personalised recommendations