, Volume 13, Issue 4, pp 1373–1385 | Cite as

Electro-plasmonic Modal Power Shifting in Metal/Insulator/Semiconductor Structure Tailored as a CMOS-compatible Plasmonic Waveguide

  • Mostafa Keshavarz MoazzamEmail author
  • Hassan Kaatuzian


In this paper, we have proposed a new npn-type design of a CMOS-compatible metal/semiconductor/insulator/metal (MSIM) plasmonic structure, to be used as a different geometry to manipulate, guide, and route surface plasmon polaritons (SPPs). Relying on the sub-wavelength diffraction-free plasmonic technology, the proposed ultra-compact structure has only a 20-nm-thick dynamic region accompanied by 1 to 2-nm thin-film HfO2 gate insulator as a distinct carrier barrier to serve both electronic and optic characteristics. The device is tailored as a mixture of MOSFET and BJT transistors in which to attain electro-plasmonic tuning goals; the npn-type structure uses rather large electron concentration densities accumulated near the oxide/semiconductor interface under 7.6-v switching voltage. This fact leads to adequate modal index variation of a doped Si, dynamic region by which routing of plasmonic traveling waves at a fiber communications wavelength of λ = 1550 nm will be possible. To investigate the optical and electronic behaviors of design, we have launched electromagnetic simulations solved on the rigorous finite element method (FEM) and also quantum mechanical (QM) included carrier transport simulations, respectively. To be reported, the estimated plasmonic modal power movement from the left-side-half-Si-core to the right-side-half-Si-core can reach to percentages of even 23.7%. This MSIM electro-plasmonic-addressed structure can be dramatically used to design specific-application routing/switching devices.


Plasmonic mode Schrödinger-Poisson solver Metal/semiconductor/insulator/metal Surface plasmon polariton P and n-type doped silicon 



The authors would like to thank the Research Deputy of Amirkabir University of Technology for the research grant support of this work. Also, we thank our colleagues in P.R.L.


  1. 1.
    Atwater HA (2007) The promise of plasmonics. Sci Am Mag 296(4):56–63CrossRefGoogle Scholar
  2. 2.
    Zia R, Schuller JA, Chandran A, Brongersma ML (2006) Plasmonics: the next chip-scale technology. Mater Today 9(7–8):20–27CrossRefGoogle Scholar
  3. 3.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefPubMedGoogle Scholar
  4. 4.
    Gramotnev DK, Bozhevolnyi SI (2010) Plasmonics beyond the diffraction limit. Nature Nanophotonics 4(2):83–91CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature, insight review articles 424:824–830Google Scholar
  6. 6.
    Zhang L, Regentova EE, Tan X (2013) Packet switching optical network-on-chip architectures. Comput and Electrical Eng 39:697–714CrossRefGoogle Scholar
  7. 7.
    Papaioannou S, Kalavrouziotis D, Vyrsokinos K, Weeber J-C, Hassan K, Markey L, Dereux A, Kumar A, Bozhevolnyi SI, Baus M, Tekin T, Apostolopoulos D, Avramopoulos H, Pleros N (2012) Active plasmonics in WDM traffic switching applications. Sci Rep 2:652. doi: 10.1038/srep00652 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Papaioannou S, Vyrsokinos K, Tsilipakos O, Pitilakis A, Hassan K, Weeber J-C, Markey L, Dereux A, Bozhevolnyi SI, Miliou A, Kriezis EE, Pleros N (2011) A 320 Gbs-throughput capable 2x2 silicon-plasmonic router architecture for optical interconnects. J Lightw Technol 29(21):3185–3195CrossRefGoogle Scholar
  9. 9.
    Krasavin AV, Zayats AV (2010) All-optical active components for dielectric-loaded plasmonic waveguides. Opt Commun 283:1581–1584CrossRefGoogle Scholar
  10. 10.
    Pitilakis A, Kriezis EE (2011) Longitudinal 2x2 switching configurations based on thermo-optically addressed dielectric-loaded plasmonic waveguides. J Lightw Technol 29(17):2636–2646CrossRefGoogle Scholar
  11. 11.
    Zhou QZ, He P, Xu J, Zhuang X, Li Y, Pan A (2014) Gradient index plasmonic ring resonator with high extinction ratio. Opt Commun 312:280–283CrossRefGoogle Scholar
  12. 12.
    Tsilipakos O, Yioultsis TV, Kriezis EE (2009) Theoretical analysis of thermally tunable microring resonator filters made of dielectric-loaded plasmonic waveguides. J Appl Phys 106:093109 (1–8CrossRefGoogle Scholar
  13. 13.
    Taheri AN, Kaatuzian H (2014) Design and simulation of a nanoscale electro-plasmonic 1x2 switch based on metal-insulator-metal stub filter. Appl Opt 53(28):6546–6553CrossRefPubMedGoogle Scholar
  14. 14.
    Pillai S, Green MA (2010) Plasmonics for photovoltaic applications. Solar Ener Mat Solar Cells 94:1481–1486CrossRefGoogle Scholar
  15. 15.
    Eftekharian A, Atikian H, Majedi AH (2013) Plasmonic superconducting nanowire single photon detector. Opt. Exp. 21(3):3043–3054CrossRefGoogle Scholar
  16. 16.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer, BerlinCrossRefGoogle Scholar
  17. 17.
    Zhu S, Lo GQ, Kwong DL (2010) Theoretical investigation of silicon MOS-type plasmonic slot waveguide based MZI modulators. Opt. Exp. 18(26):27802–27819CrossRefGoogle Scholar
  18. 18.
    Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S, Ye J, Vincze P, Hahn H, Schimmel T, Koos C, Freude W, Leuthold J (2011) Surface plasmon polariton absorption modulator. Opt. Exp. 19(9):8855–8869CrossRefGoogle Scholar
  19. 19.
    Mote RG, Chu H-S, Bai P, Li E-P (2012) Compact and efficient coupler to interface hybrid dielectric-loaded plasmonic waveguide with silicon photonic slab waveguide. Opt Commun 285:3709–3713CrossRefGoogle Scholar
  20. 20.
    Li Q, Qiu M (2013) Plasmonic wave propagation in silver nanowires: guiding modes or not ? Opt. Exp. 21(7):8587–8595CrossRefGoogle Scholar
  21. 21.
    Lu Q, Zou C-L, Chen D, Zhou P, Wu G (2014) Extreme light confinement and low loss in triangle hybrid plasmonic waveguide. Opt Commun 319:141–146CrossRefGoogle Scholar
  22. 22.
    Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) Plasmostor: a metal-oxide-Si field effect plasmonic modulator. Nano Lett 9(2):897–902CrossRefPubMedGoogle Scholar
  23. 23.
    V. J. Sorger, Z. Ye, R. F. Oulton, Y. Wang, G. Bartal, X. Yin and X. Zhang (2011), Experimental demonstration of low-loss optical waveguiding at deep sub-wavelength scales, Nature Communications, DOI:  10.1038/ncomms1315, pp. 1–5
  24. 24.
    Avrutsky I, Soref R, Buchwald W (2010) Sub-wavelength plasmonic modes in a conductor-gap-dielectric system with a nanoscale gap. Opt Exp 18(1):348–363CrossRefGoogle Scholar
  25. 25.
    Zhu S, Lo GQ, Kwong DL (2012) Components for silicon plasmonic nanocircuits based on horizontal Cu-SiO2-Si-SiO2-Cu nanoplasmonic waveguides. Opt. Exp. 20(6):5867–5881CrossRefGoogle Scholar
  26. 26.
    Thomas R, Ikonic Z, Kelsall RW (2012) Electro-optic metal-insulator-semiconductor-insulator-metal Mach-Zehnder plasmonic modulator. Photon Nanostruc 10:183–189CrossRefGoogle Scholar
  27. 27.
    H. Kaatuzian and M. Keshavarz M (2014) Analysis and design of a 1x2 ring resonator-based plasmonic switch, 2 nd international conf. on Applications of Optics and Photonics (AOP2014), Aviero, Proc. of SPIE, vol. 9286, 92863B 1–4Google Scholar
  28. 28.
    Bright TJ, Watjen JI, Zhang ZM, Muratore C, Voevodin AA (2013) Optical properties of HfO2 thin films deposited by magnetron sputtering: from the visible to the far-infrared. Thin Solid Films 520:6793–6802CrossRefGoogle Scholar
  29. 29.
    Chien F-T, Chen C-W, Lee T-C, Wang C-L, Cheng C-H, Kang T-K, Chiu H-C (2013) A novel self-aligned double-channel polysilicon thin-film transistor. IEEE Trans on Electron Dev 60(2):799–804CrossRefGoogle Scholar
  30. 30.
    Omura Y, Horiguchi S, Tabe M, Kishi K (1993) Quantum-mechanical effects on the threshold voltage of ultrathin-SOI nMOSFET’s. IEEE Electron Dev Lett 14(12):569–571CrossRefGoogle Scholar
  31. 31.
    Kaatuzian H (2012) Quantum photonics, a theory for attosecond optics. Amirkabir University Press, TehranGoogle Scholar
  32. 32.
    Marris-Morini D, Vivien L, Rasigade G, Fedeli J-M, Cassan E, Le Roux X, Crozat P, Maine S, Lupu A, Lyan P, Rivallin P, Halbwax M, Laval S (2009) Recent progress in high-speed Si-based optical modulators. Proc of IEEE 97(7):1199–1215CrossRefGoogle Scholar
  33. 33.
    Soref RA, Bennett BR (1987) Electrooptical effects in silicon. IEEE J Quantum Electron QE-23(1):123–129CrossRefGoogle Scholar
  34. 34.
    Soref RA, Bennett BR (1986) Kramers-Kronig analysis of electro-optical switching in silicon. Proc SPIE 704:32–37CrossRefGoogle Scholar
  35. 35.
    Nielsen MP, Ashfar A, Cadien K, Elezzabi AY (2013) Plasmonic materials for metal-insulator-semiconductor-insulator-metal nanoplasmonic waveguides on silicon-on-insulator platform. Opt Materials 36:294–298CrossRefGoogle Scholar
  36. 36.
    Soref RA, Peale RE, Buchwald W (2008) Longwave plasmonics on doped silicon and silicides. Opt Exp 16(9):6507–6514CrossRefGoogle Scholar
  37. 37.
    Krishnan A, Grave de Peralta L, Holtz M, Bernussi AA (2009) Finite element analysis of lossless propagation in surface plasmon polariton waveguides with nanoscale spot-sizes. J Lightw Technol 27(9):1114–1121CrossRefGoogle Scholar
  38. 38.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Review B 6(12):4370–4379CrossRefGoogle Scholar
  39. 39.
    Hu W, Chen X, Zhou X, Quan Z, Wei L (2006) Quantum-mechanical effects and gate leakage current of nanoscale n-type FinFETs: a 2d simulation study. Microelectron J 37:613–619CrossRefGoogle Scholar
  40. 40.
    Wang Y, Lin Z, Cheng X, Xiao H, Zhang F, Zou S (2004) Study of HfO2 thin films prepared by electron beam evaporation. Appl Surf Sci 228:93–99CrossRefGoogle Scholar
  41. 41.
    Simulation standard, “Quantum Modeling, Part I: Poisson-Schrodinger Solver,” (2002) Silvaco Group, vol. 12, no. 11, pp. 7-9, Nov. 2002. Accessed 6 Aug 2017

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Photonics Research Laboratory (P.R.L.), Electrical Engineering DepartmentAmirkabir University of TechnologyTehranIran

Personalised recommendations