, Volume 13, Issue 4, pp 1367–1371 | Cite as

Very Long Plasmon Oscillation Lifetimes in the Gap Between Two Gold Particles

  • Marcel Di VeceEmail author


A small gap between metal nanoparticles provides a strong local field enhancement when illuminated with light. This local field enhancement has proven to be very useful to enhance the response in Raman spectroscopy and may even contribute to increased efficiency in solar cells. Here, the nature of the field enhancement and the effect on the optical absorption spectrum has been identified by measuring the electro-magnetic fields within and outside the nanoparticle gap. Time resolved measurement of the electric field component showed that the plasmon resonance within the gap lives much longer than the excitation pulse duration. These results elucidate the optical properties of the plasmonic gap and provide ideas for future research.


Field enhancement Plasmon resonance lifetime Gold particles Plasmonic gap 



The physics department of KU Leuven is thanked for making their computer facility available.


  1. 1.
    Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photonics 5:523–530CrossRefGoogle Scholar
  2. 2.
    Atwater HA, Polman (2009) Plasmonics for improved photovoltaic devices. Nat Mat 9:205–213Google Scholar
  3. 3.
    Ferry FE, Munday JN, Atwater HA (2010) Design considerations for plasmonic photovoltaics. Adv Mat 22:4794–4808CrossRefGoogle Scholar
  4. 4.
    Kauranen M, Zayats AV (2012) Nonlinear plasmonics. Nat Photon 6:737CrossRefGoogle Scholar
  5. 5.
    Deeb C, Zhou X, Miller R, Gray SK, Marguet S, Plain J, Wiederrecht GP, Bachelor R (2012) Size dependence of the plasmonic near-field measured via single-nanoparticle photo imaging. J Phys Chem C 116:24734–24740CrossRefGoogle Scholar
  6. 6.
    Ciracì C, Hill RT, Mock JJ, Urzhumov Y, Fernández-Domínguez AI, Maier SA, Pendry JB, Chilkoti A, Smith DR (2012) Probing the ultimate limits of Plasmonic enhancement. Science 337:1072–1074CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Nie S, Emory SR Probing (1997) Single molecules and single nanoparticles by surface-enhanced Raman scattering. Science, 275:1102–1106Google Scholar
  8. 8.
    Michaels AM, Jiang J, Brus L (2000) Ag nanocrystal junctions as the site for surface-enhanced Raman scattering of single rhodamine 6G molecules. J Phys Chem B 104:11965–11971CrossRefGoogle Scholar
  9. 9.
    García-Martín A, Ward DR, Natelson D, Cuevas JC (2011) Field enhancement in subnanometer metallic gaps. Phys. Rev. B 83:193404-193404-4Google Scholar
  10. 10.
    Nien LW, Lin SC, Chao BK, Chen MJ, Li JH, Hsueh CH (2013) Giant electric field enhancement and localized surface plasmon resonance by optimizing contour bowtie Nanoantennas. J Phys Chem C 117:25004–25011CrossRefGoogle Scholar
  11. 11.
    Hao E, Schatz GC (2004) Electromagnetic fields around silver nanoparticles and dimers. J Chem Phys 120:357–366CrossRefPubMedGoogle Scholar
  12. 12.
    Jain PK, Huang W, El-Sayed MA (2007) On the universal scaling behavior of the distance decay of plasmon coupling in metal nanoparticle pairs: a plasmon ruler equation. Nano Lett 7:2080–2088CrossRefGoogle Scholar
  13. 13.
    Ding T, Sigle D, Zhang L, Mertens J, de Nijs B, Baumberg J (2015) Controllable tuning plasmonic coupling with nanoscale oxidation. ACS Nano 9(6):6110–6118CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Su K-H, Wei Q-H, Zhang X, Mock JJ, Smith DR, Schultz S (2003) Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett 3:1087–1090CrossRefGoogle Scholar
  15. 15.
    Di Vece M, Giannakoudakis G, Bjørkøy A, Tang W (2015) Luminescent tracks of high-energy photo emitted electrons accelerated by plasmonic fields. Nano 4:511–519Google Scholar
  16. 16.
    Zhu W, Esteban R, Borisov AG, Baumberg JJ, Nordlander P, Lezec HJ, Aizpurua J, Crozier KB (2016) Quantum mechanical effects in plasmonic structures with subnanometre gaps. Nat Commun 7:11495. doi: 10.1038/ncomms11495 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Scholl JA, García-Etxarri A, Koh AL, Dionne JA (2013) Observation of quantum tunneling between two plasmonic nanoparticles. Nano Lett 13:564–569CrossRefPubMedGoogle Scholar
  18. 18.
    Savage KJ, Hawkeye MM, Esteban R, Borisov AG, Aizpurua J, Baumberg JJ (2012) Revealing the quantum regime in tunnelling plasmonics. Nature 491:574–577CrossRefPubMedGoogle Scholar
  19. 19.
    Engheta N, Salandrino A, Alú A (2005) Circuit elements at optical frequencies: nanoinductors, nanocapacitors, and nanoresistors. Phys Rev Lett 95:095504CrossRefPubMedGoogle Scholar
  20. 20.
    Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, and Yang JKW (2012) Nanoplasmonics: classical down to the nanometer scale. Nano Lett.12:1683−1689 doi:  10.1021/nl3001309

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.CIMAINA and Dipartimento di FisicaUniversità di MilanoMilanItaly

Personalised recommendations