Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1335–1342 | Cite as

Plasmonic Near-Field Effect on Visible and Near-Infrared Emissions from Self-Assembled Gold Nanoparticle Films

  • Zeinab Ebrahimpour
  • Nastaran Mansour
Article

Abstract

In this work, we have performed a systematic investigation of the plasmon near-field effect on photoluminescence (PL) behavior of the annealed self-assembled gold nanostructured films. For this purpose, PL spectra of the films in different morphologies are compared. This allows us to identify the role of plasmon near-field enhancement and coupling effects in visible and near-infrared emissions as modulating the energy transfer mechanism between excited electrons and emitted photons. Our results indicate that the films’ near-infrared emission is generated by allowed intraband transition related to the breakdown of the symmetry and momentum selection rules due to the strongly confined near-field distribution. In addition, it is found that the efficiency of the near-infrared emission is directly proportional to the strength of the coupled near-field effect. The observed visible emission of the films is well explained by the interband transition of electrons into the conduction band and subsequent radiation by particle plasmons. The influence of the coupled plasmon resonance of the samples on the characteristics of the visible PL emission is discussed. The observed emission properties of the gold nanostructured films can make them very attractive material for many bio-imaging and surface-enhanced Raman scattering (SERS) applications.

Keywords

Gold nanostructured films Photoluminescence Near-field effect Visible emission Near-infrared emission 

References

  1. 1.
    M. P. Kreuzer, M. U. González, R. Quidant, I. D. C. Fotoniques, and M. T. Park, 5 (2009) Plasmon near-field coupling in metal dimers as a step toward single-molecule sensing. ACS Nano 3: 1231–1237Google Scholar
  2. 2.
    Okamoto T, Yamaguchi I, Kobayashi T (2000) Local plasmon sensor with gold colloid monolayers deposited upon glass substrates. Opt Lett 25(6):372–374CrossRefPubMedGoogle Scholar
  3. 3.
    K. Grochowska and G. Sliwinski, (2011) Quality investigation of au nanoarrays for biosensing application, Solid State Phenom 183: 81–88Google Scholar
  4. 4.
    Batalla J, Cabrera H, San Martin-Martinez E, Korte D, Calderon A, Marin E (2015) Encapsulation efficiency of CdSe/ZnS quantum dots by liposomes determined by thermal lens microscopy. Biomed Opt Express 6(10):3898–3906CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Gao Y, Li Y (2016) Gold nanostructures for cancer imaging and therapy. Advances in Nanotheranostics I. Springer, Berlin Heidelberg, pp 53–101Google Scholar
  6. 6.
    Kanipe KN, Chidester PPF, Stucky GD, Moskovits Kanipe M (2016) Large format surface-enhanced Raman spectroscopy substrate optimized for enhancement and uniformity. ACS Nano 10(8):7566–7571CrossRefPubMedGoogle Scholar
  7. 7.
    N. Ahmad, J. Stokes, N. a. Fox, M. Teng, and M. J. Cryan (2012) Ultra-thin metal films for enhanced solar absorption. Nano Energy 1.6: 777–782Google Scholar
  8. 8.
    Axelevitch A, Golan G (2013) Solar cells efficiency increase using thin metal island films. J Sol Energy 2013Google Scholar
  9. 9.
    Notarianni M, Vernon K, Chou A, Aljada M, Liu J, Motta N (2014) Plasmonic effect of gold nanoparticles in organic solar cells. Sol Energy 106:23–37CrossRefGoogle Scholar
  10. 10.
    Oelhafen P, Schüler A (2005) Nanostructured materials for solar energy conversion. Sol Energy 79(2):110–121CrossRefGoogle Scholar
  11. 11.
    Cabrera H, Mendoza D, Benítez JL, Flores CB, Alvarado S, Marín E (2015) Thermal diffusivity of few-layers graphene measured by an all-optical method. J Phys D Appl Phys 48(46):465–501CrossRefGoogle Scholar
  12. 12.
    Hongyan S, Wang J, Liu D, Hu ZD, Xia X, Sang T (2017) Plasmonic planar lens based on slanted nanoslit array. Plasmonics 12(2):361–367CrossRefGoogle Scholar
  13. 13.
    X. Wang, C. Chen, L. Pan, and J. Wang, (2016) A graphene-based Fabry-Pérot spectrometer in mid-infrared region. Scientific Reports, 6Google Scholar
  14. 14.
    Wang J, Sun L, Hu ZD, Liang X, Liu C (2014) Plasmonic-induced transparency of unsymmetrical grooves shaped metal–insulator–metal waveguide. AIP Adv 4(12):123006CrossRefGoogle Scholar
  15. 15.
    Wang J, Wang Y, Zhang X, Yang K, Wang Y, Liu S, Song Y (2010) Splitting and unidirectional excitation of surface plasmon polaritons by two uniform metallic nanoslits with a nanocavity antenna. J Mod Opt 57(17):1630–1634CrossRefGoogle Scholar
  16. 16.
    Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35(3):209–217CrossRefPubMedGoogle Scholar
  17. 17.
    El-Brolossy TA, Abdallah T, Mohamed MB, Abdallah S, Easawi K, Negm S, Talaat H (2008) Shape and size dependence of the surface plasmon resonance of gold nanoparticles studied by photoacoustic technique. Eur Phys J Spec Top 153(1):361–364CrossRefGoogle Scholar
  18. 18.
    Dulkeith E, Niedereichholz T, Klar TA, Feldmann J, Von Plessen G, Gittins DI, Mayya KS, Caruso F (2004) Plasmon emission in photoexcited gold nanoparticles. Phys Rev B 70(20):205–424CrossRefGoogle Scholar
  19. 19.
    Shahbazyan TV (2012) Theory of plasmon-enhanced metal photoluminescence. Nano Lett 13(1):194–198CrossRefPubMedGoogle Scholar
  20. 20.
    Wang X, Gogol P, Cambril E, Palpant B (2012) Near-and far-field effects on the plasmon coupling in gold nanoparticle arrays. J Phys Chem C 116(46):24741–24747CrossRefGoogle Scholar
  21. 21.
    Ebrahimpour Z, Mansour N (2017) Annealing effects on electrical behavior of gold nanoparticle film: conversion of ohmic to non-ohmic conductivity. Appl Surf Sci 394:240–247CrossRefGoogle Scholar
  22. 22.
    Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev 107(11):4797–4862CrossRefPubMedGoogle Scholar
  23. 23.
    Beversluis M, Bouhelier A, Novotny L (2003) Continuum generation from single gold nanostructures through near-field mediated intraband transitions. Phys Rev B 68(11):115433CrossRefGoogle Scholar
  24. 24.
    Haug T, Klemm P, Bange S, Lupton JM (2015) Hot-electron intraband luminescence from single hot spots in noble-metal nanoparticle films. Phys Rev Lett 115(6):067403CrossRefPubMedGoogle Scholar
  25. 25.
    Jain PK, El-Sayed MA (2010) Plasmonic coupling in noble metal nanostructures. Chem Phys Lett 487(4):153–164CrossRefGoogle Scholar
  26. 26.
    Zurita-Sánchez JR, Novotny L (2002) Multipolar interband absorption in a semiconductor quantum dot. I. Electric quadrupole enhancement. JOSA B 19(6):1355–1362CrossRefGoogle Scholar
  27. 27.
    Turkevich J (1985) Colloidal gold. PART II. Gold Bull 18(4):125–131CrossRefGoogle Scholar
  28. 28.
    Kvítek O, Siegel J, Hnatowicz V, Švorčík V (2013) Noble metal nanostructures influence of structure and environment on their optical properties. J Nanomater 2013:111CrossRefGoogle Scholar
  29. 29.
    Zhang X, Zhang J, Wang H, Hao Y, Zhang X, Wang T, Wang Y, Zhao R, Zhang H (2010) Thermal-induced surface plasmon band shift of gold nanoparticle monolayer: morphology and refractive index sensitivity. Nanotechnology 21(46):465702CrossRefPubMedGoogle Scholar
  30. 30.
    Karakouz T, Tesler AB, Sannomiya T, Feldman Y, Vaskevich A, Rubinstein I (2013) Mechanism of morphology transformation during annealing of nanostructured gold films on glass. Phys Chem Chem Phys 15(13):4656–4665CrossRefPubMedGoogle Scholar
  31. 31.
    Ahn W, Taylor B, Dall’Asén AG, Roper DK (2008) Electroless gold island thin films: photoluminescence and thermal transformation to nanoparticle ensembles. Langmuir 24(8):4174–4184CrossRefPubMedGoogle Scholar
  32. 32.
    Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220(1):137–141CrossRefGoogle Scholar
  33. 33.
    Myroshnychenko V, Rodríguez-Fernández J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzán LM, García de Abajo FJ (2008) Modelling the optical response of gold nanoparticles. Chem Soc Rev 37(9):1792–1805CrossRefPubMedGoogle Scholar
  34. 34.
    Grochowska K, Śliwiński G, Iwulska A, Sawczak M, Nedyalkov N, Atanasov P, Obara G, Obara M (2013) Engineering Au nanoparticle arrays on SiO2 glass by pulsed UV laser irradiation. Plasmonics 8(1):105–113CrossRefPubMedGoogle Scholar
  35. 35.
    Philip R, Chantharasupawong P, Qian H, Jin R, Thomas J (2012) Evolution of nonlinear optical properties: from gold atomic clusters to plasmonic nanocrystals. Nano Lett 12(9):4661–4667CrossRefPubMedGoogle Scholar
  36. 36.
    Alvarez MM, Khoury JT, Schaaff TG, Shafigullin MN, Whetten RL, Vezmar I (1997) Optical absorption spectra of nanocrystal gold molecules. J Phys Chem B 101(19):3706–3712CrossRefGoogle Scholar
  37. 37.
    Eichelbaum M, Schmidt BE, Ibrahim H, Rademann K (2007) Three-photon-induced luminescence of gold nanoparticles embedded in and located on the surface of glassy nanolayers. Nanotechnology 18(35):355702CrossRefGoogle Scholar
  38. 38.
    Balamurugan B, Maruyama T (2005) Evidence of an enhanced interband absorption in Au nanoparticles: size-dependent electronic structure and optical properties. Appl Phys Lett 87(14):143105CrossRefGoogle Scholar
  39. 39.
    Rao CNR, Kulkarni GU, John Thomas P, Edwards PP (2002) Size-dependent chemistry: properties of nanocrystals. Chem Eur J 8(1):28–35CrossRefPubMedGoogle Scholar
  40. 40.
    Ngoc LLT, Wiedemair J, van den Berg A, Carlen ET (2015) Plasmon-modulated photoluminescence from gold nanostructures and its dependence on plasmon resonance, excitation energy, and band structure. Opt Express 23(5):5547–5564CrossRefGoogle Scholar
  41. 41.
    Matzdorf R, Gerlach A, Theilmann F, Meister G, Goldmann A (1999) New lifetime estimates for d-band holes at noble metal surfaces. Applied Physics B 68(3):393–395CrossRefGoogle Scholar
  42. 42.
    T. Roy, E. T. F. Rogers, and N. I. Zheludev, (2016) Luminescence engineering in plasmonic meta-surfaces. arXiv preprint arXiv: 1606.03491Google Scholar
  43. 43.
    Das R, Sarkar S, Saha M, Dey PC, Nath SS (2015) Two peak luminescence from linoleic acid protected gold nanoparticles. J Lumin 168:325–329CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Applied Physics DepartmentShahid Beheshti University (SBU)TehranIran

Personalised recommendations