Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1309–1314 | Cite as

Broadband Optical Reflection Modulator in Indium-Tin-Oxide-Filled Hybrid Plasmonic Waveguide with High Modulation Depth

  • Lei Han
  • Huafeng Ding
  • Tianye Huang
  • Xu Wu
  • Bingwei Chen
  • Kaixuan Ren
  • Songnian Fu
Article
  • 143 Downloads

Abstract

A surface plasmon resonance (SPR)-based optical reflection modulator consisting of vertically stacked silica-silicon-HfO2-ITO-HfO2-Ag-prism multilayer is proposed and numerically investigated. The free carrier-concentration-dependent permittivity of indium-tin-oxide (ITO) at the HfO2/ITO interface induces an epsilon-near-zero (ENZ) effect contributing to strong field enhancement and modifies the SPR condition of incident light. With optimal geometry parameters and proper design of carrier concentration at the accumulation layer, modulation depth (MD) of ~100% and insertion loss (IL) of 3.7% can be simultaneously achieved. The IL can be further reduced by engineering silicon layer thickness. Moreover, the device offers a broadband operation wavelength from 1.5 to 1.6 μm with the variations of MD and IL smaller than 4 and 3%, respectively.

Keywords

Integrated optics devices Surface-plasmon resonance Modulators 

Notes

Acknowledgements

This work was partially supported by the National Natural Science Foundation of China (61605179), the Fundamental Research Funds for the Central Universities, China University of Geosciences (Wuhan) (162301132703, G1323511665), and the 863 High Technology Plan (2015AA015502).

References

  1. 1.
    Oulton RF, Sorger VJ, Genov DA, Pile DFP, Zhang X (2008) A hybrid plasmonic waveguide for subwavelength confinment and long range propagation. Nat Photon 7:496–500CrossRefGoogle Scholar
  2. 2.
    Huang C, Lamond RJ, Pickus SK, Li ZR, Sorger VJ (2013) A sub-λ modulator beyond the efficiency-loss limit. IEEE Photon J 5:2202411CrossRefGoogle Scholar
  3. 3.
    Dionne JA, Diest K, Sweatlock LA, Atwater HA (2009) PlasMOStor: a metal-Ox-Si field effect plasmonic modulator. Nano Lett 9:897–902CrossRefGoogle Scholar
  4. 4.
    Cai W, White JS, Brongersma ML (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9:4403–4411CrossRefGoogle Scholar
  5. 5.
    Lee HW, Papadakis G, Burgos SP, Chander K, Kriesch A, Pala R, Peschel U, Atwater HA (2014) Nanoscale conducting oxide PlasMOStor. Nano Lett 14:6463–6468CrossRefGoogle Scholar
  6. 6.
    Jin L, Chen Q, Liu W, Song S (2016) Electro-absorption modulator with dual carrier accumulation layers based on epsilon-near-zero ITO. Plasmonics 11:1087–1092CrossRefGoogle Scholar
  7. 7.
    Baek J, You JB, Yu K (2015) Free-carrier electro-refraction modulation based on a silicon slot waveguide with ITO. Opt Express 23:15863–15876CrossRefGoogle Scholar
  8. 8.
    Karsavin AV, Zayats AV (2012) Photonic signal processing on electriconic scales: electro-optical field-effect nanoplasmonic modulator. Phy Rev Lett 109:053901CrossRefGoogle Scholar
  9. 9.
    Melikyan A, Lindenmann N, Walheim S, Leufke PM, Ulrich S, Ye J, Vincze P, Hahn H, Schimmel T, Koos C, Freude W, Leuthold J (2011) Surface plasmon polariton absorption modulator. Opt Express 9:8855–8869CrossRefGoogle Scholar
  10. 10.
    Ye C, Khan S, Li ZR, Simsek E, Sorger VJ (2014) λ-size ITO and graphene-based electro-optic modulators on SOI. IEEE J. Sel. Top. Quantum electron 20:3400310Google Scholar
  11. 11.
    Kim JT (2014) CMOS-compatible hybrid plasmonic modulator based on vanadium dioxide insulator-metal phase transition. Opt Lett 39:3997–4000CrossRefGoogle Scholar
  12. 12.
    Sweatlock LA, Diest K (2012) Vanadium dioxide based plasmonic modulators. Opt Express 20:8700–8709CrossRefGoogle Scholar
  13. 13.
    Briggs RM, Pryce IM, Atwater HA (2010) Compact silicon photonic waveguide modulator based on the vanadium dioxide metal-insulator phase transition. Opt Express 18:11192–11201CrossRefGoogle Scholar
  14. 14.
    Kleine-Ostmann T, Dawson P, Pierz K, Hein G, Koch M (2004) Room-temperature operation of an electrically driven terahertz modulator. Appl Phys Lett 84:3555–3557CrossRefGoogle Scholar
  15. 15.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel HA, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6:630–634CrossRefGoogle Scholar
  16. 16.
    Zhu W, Rukhlenko ID, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102:241914CrossRefGoogle Scholar
  17. 17.
    Kinsey N, Devault C, Kim J, Fererra M, Shalaev VM, Bolatasseva A (2015) Epsilon-near-zero Al-doped ZnO for ultrafast switching at telecom wavelengths. Optica 2:616–622CrossRefGoogle Scholar
  18. 18.
    Kim M, Jeong CY, Heo H, Kim S (2015) Optical reflection modulation using surface plasmon resonance in a graphene-embeded hybrid plasmonic waveguide at an optical communication wavelength. Opt Lett 40:871–874CrossRefGoogle Scholar
  19. 19.
    Luo J, Xu P, Gao L, Lai Y, Chen H (2012) Manipulate the transmissions using index-near-zero or epsilon-near-zero metamaterials with coated defects. Plasmonics 7:353–358CrossRefGoogle Scholar
  20. 20.
    Huang T (2016) TE-pass polarizer based on epsilon-near-zero material embedded in a slot waveguide. IEEE Photon Technol Lett 28:2145–2148CrossRefGoogle Scholar
  21. 21.
    Moaied M, Yajiadda MMA, Ostrikov K (2015) Quantum effects of nonlocal plasmons in epsilon-near-zero properties of a thin gold film slab. Plasmonics 10:1615–1623CrossRefGoogle Scholar
  22. 22.
    Zeng S, Hu S, Xia J, Anderson T, Dinh XQ, Meng X, Coquet P, Yong KT (2015) Graphene-MoS2 hybrid nanostrutures enhanced surface plasmon resonace biosensors. Sensors Actuators B Chem 207:801–810CrossRefGoogle Scholar
  23. 23.
    Fleming JW (1984) Dispersion in GeO2-SiO2 glasses. App Opt 23:4486–4493CrossRefGoogle Scholar
  24. 24.
    Palik ED (1998) Handbook of optical constants of solids. Academic, San DiegoGoogle Scholar
  25. 25.
    Homola J, Surface plasmon resonance based sensors, Springer 2006Google Scholar
  26. 26.
    Capretti A, Wang Y, Engheta N, Negro LD (2015) Enhanced third-harmonic generation in Si-compatible epslion-near-zero indium tin oxide nanolayers. Opt Lett 40:1500–1503CrossRefGoogle Scholar
  27. 27.
    Miller DAB (2012) Energy consumption in optical modulators for interconnects. Opt Express 20:A293–A308CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.School of Mechanical Engineering and Electronic InformationChina University of Geosciences (Wuhan)WuhanChina
  2. 2.National Engineering Laboratory for Next Generation Internet Access System, School of Optics and Electronic InformationHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations