Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1297–1308 | Cite as

Nanosecond Laser-Assisted Fabrication of Colloidal Gold and Silver Nanoparticles and Their Conjugation with S-Ovalbumin

  • Deepti Joshi
  • R. K. Soni
Article
  • 94 Downloads

Abstract

In the present work, we have investigated the functionalization of protein S-ovalbumin with laser-generated gold nanoparticles (AuNPs) and silver nanoparticles (AgNPs) using spectroscopic techniques. Biocompatible gold and silver nanoparticles were fabricated by nanosecond pulsed laser ablation (PLA) of metal target in water and directly conjugated to protein S-ovalbumin. The localized surface plasmon resonance (LSPR) of gold and silver nanoparticles is sensitive to particle size, shape, and surrounding medium refractive index. UV–visible absorption spectrum of both AuNPs and AgNPs showed red shift in LSPR after protein addition. The effect of laser fluence on the size of AuNPs and nanoparticle-protein conjugation in the size range 6–32 nm has been systematically studied. The presence of NPs resulted in broadening of S-ovalbumin absorption peak around 278 nm. Raman spectra of S-ovalbumin-NP assembly demonstrated breaking of disulfide bond and appearance of peak around 290 and 206 cm−1 corresponding to Au–S and Ag–S bond formation, respectively. Further, increase in the ratio of the 1350/1320-cm−1 doublet was observed, which indicates that hydrophobicity for tryptophan residues in the protein-NP assembly has increased. Fluorescence spectroscopy showed quenching in emission intensity of S-ovalbumin in the presence of AuNPs and AgNPs. The number of binding sites between AuNPs and S-ovalbumin has been found to be 1.4 with binding constant 4.5 × 109 M−1. The calculated values of binding constant and number of binding sites for AgNPs and S-ovalbumin were 2.4 × 109 M−1and 0.96, respectively.

Keywords

Pulsed laser ablation (PLA) Gold and silver nanoparticles Localized surface plasmon resonance (LSPR) Optical absorption Raman spectra Fluorescence spectroscopy 

References

  1. 1.
    Lacerda SHDP, Park JJ, Meuse C, Pristinski D, Becker ML, Karim A, Douglas JF (2010) Interaction of gold nanoparticles with common human blood proteins. ACS Nano 4:365–379CrossRefGoogle Scholar
  2. 2.
    Yu C, Samia AC, Li J, Kenney ME, Resnick A, Burda C (2010) Delivery and efficacy of a cancer drug as a function of the bond to the gold nanoparticle surface. Langmuir 26:2248–2255CrossRefGoogle Scholar
  3. 3.
    Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315CrossRefGoogle Scholar
  4. 4.
    Zharov VP, Mercer KE, Galitovskaya EN, Smeltzer MS (2006) Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophys J 90:619–627CrossRefGoogle Scholar
  5. 5.
    Singhal G, Bhavesh R, Kasariya K, Sharma AR, Singh RP (2011) Biosynthesis of silver nanoparticles using Ocimum sanctum(Tulsi) leaf extract and screening its antimicrobial activity. J Nanopart Res 13:2981–2988CrossRefGoogle Scholar
  6. 6.
    Gobin AM, Watkins EM, Quevedo E, Colvin VL, West JL (2010) Near-infrared-resonant gold/gold sulfide nanoparticles as a photothermal cancer therapeutic agent. Small 6:745–752CrossRefGoogle Scholar
  7. 7.
    Kennedy LC, Bickford LR, Lewinski NA, Coughlin AJ, Hu Y, Day ES, West JL, Drezek RA (2011) A new era for cancer treatment: gold-nanoparticle-mediated thermal therapies. Small 7:169–183CrossRefGoogle Scholar
  8. 8.
    Satyavani K, Gurudeeban S, Ramanathan T, Balasubramanian T (2011) Biomedical potential of silver nanoparticles synthesized from calli cells of Citrullus colocynthis (L.) Schrad. Journal of Nanobiotechnology 9:43CrossRefGoogle Scholar
  9. 9.
    Mayilo S, Kloster MA, Wunderlich M, Lutich A, Klar TA, Nichtl A, Kurzinger K, Stefani FD, Feldmann J (2009) Long-range fluorescence quenching by gold nanoparticles in a sandwich immunoassay for cardiac troponin T. Nano Lett 9:4558–4563CrossRefGoogle Scholar
  10. 10.
    Liu X, Dai Q, Austin L, Coutts J, Knowles G, Zou J, Chen H, Huo Q (2008) A one-step homogeneous immunoassay for cancer biomarker detection using gold nanoparticle probes coupled with dynamic light scattering. J Am Chem Soc 130:2780–2782CrossRefGoogle Scholar
  11. 11.
    Frederix F, Friedt JM, Choi KH, Laureyn W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900CrossRefGoogle Scholar
  12. 12.
    Jia L, Lv LP, Xu JP, Ji J (2011) Phosphorylcholine functionalized dendrimers for the formation of highly stable and reactive gold nanoparticles and their glucose conjugation for biosensing. J Nanopart Res 13:4075–4083CrossRefGoogle Scholar
  13. 13.
    Basu S, Ghosh SK, Kundu S, Panigrahi S, Praharaj S, Pande S, Jana S, Pal T (2007) Biomolecule induced nanoparticle aggregation: effect of particle size on interparticle coupling. J Colloid and Interface Science 313:724–734CrossRefGoogle Scholar
  14. 14.
    Majzika A, Fulopb L, Csapoa E, Bogarb F, Martinekc T, Penkea B, Birod G, Dekanya I (2010) Functionalization of gold nanoparticles with amino acid, amyloid peptides and fragment. Colloids Surf B: Biointerfaces 81:235–241CrossRefGoogle Scholar
  15. 15.
    Tsuji T, Iryo K, Watanabe N, Tsuji M (2002) Preparation of silver nanoparticles by laser ablation in solution: influence of laser wavelength on particle size. Appl Surf Sci 202:80–85CrossRefGoogle Scholar
  16. 16.
    Yang GW (2007) Laser ablation in liquids: applications in the synthesis of nanocrystals. Prog Mater Sci 52:648–698CrossRefGoogle Scholar
  17. 17.
    Petersen S, Barcikowski S (2009) In situ bioconjugation: single step approach to tailored nanoparticle-bioconjugates by ultrashort pulsed laser ablation. Adv Funct Mater 19:1167–1172CrossRefGoogle Scholar
  18. 18.
    Kabashin AV, Meunier M, Kingston C, Luong JHT (2003) Fabrication and characterization of gold nanoparticles by femtosecond laser ablation in an aqueous solution of cyclodextrins. J Phys Chem B 107:4527–4531CrossRefGoogle Scholar
  19. 19.
    Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JHT (2004) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108:16864–16869CrossRefGoogle Scholar
  20. 20.
    Sahoo D, Bhattacharya P, Patra HK, Mandal P, Chakravorti S (2011) Gold nanoparticle induced conformational changes in heme protein. J Nanopart Res 13:6755–6760CrossRefGoogle Scholar
  21. 21.
    Zhang D, Neumann O, Wang H, Yuwono VM, Barhoumi A, Perham M, Hartgerink JD, Wittung-Stafshede P, Halas NJ (2009) Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett 9:666–671CrossRefGoogle Scholar
  22. 22.
    Joshi D, Soni RK (2015) Synthesis of gold and silver nanoparticle S-ovalbumin protein conjugates by in situ conjugation process. J Nanopart Res 17:210CrossRefGoogle Scholar
  23. 23.
    Peng ZG, Hidajat K, Uddin MS (2004) Conformational change of adsorbed and desorbed bovine serum albumin on nanosized magnetic particles. Colloids Surf B 33:15–21CrossRefGoogle Scholar
  24. 24.
    Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B:Biointerfaces 58:3–7CrossRefGoogle Scholar
  25. 25.
    Paramelle D, Sadovoy A, Gorelik S, Free P, Hobley J, Fernig DG (2014) A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible spectra. Analyst 139:4855–4861CrossRefGoogle Scholar
  26. 26.
    Fothergill LA, Fothergill JE (1970) Thiol and disulfide contents of hen ovalbumin, c-terminal sequence and location of disulfide bond. Biochem J 116:555–561CrossRefGoogle Scholar
  27. 27.
    Yamasaki M, Takahashi N, Hirose M (2003) Crystal structure of s-ovalbumin as a non-loop-inserted thermostabilized serpin form. J Bio Chem 278:35524–35530CrossRefGoogle Scholar
  28. 28.
    Dolgaev SI, Simakin AV, Voronov VV, Shafeev GA, Bozon-Verduraz F (2002) Nanoparticles produced by laser ablation of solids in liquid environment. Appl Surf Sci 186:546–551CrossRefGoogle Scholar
  29. 29.
    Haiss W, Thanh NTK, Aveyard J, Fernig DG (2007) Determination of size and concentration of gold nanoparticles from UV–vis spectra. Anal Chem 79:4215–4221CrossRefGoogle Scholar
  30. 30.
    Mafune F, Kohno J, Takeda Y, Kondow T, Sawabe H (2001) Formation of gold nanoparticles by laser ablation in aqueous solution of surfactant. J Phys Chem B105:5114–5120CrossRefGoogle Scholar
  31. 31.
    Link S, El-Sayed MA (1999) Size and temperature dependence of the plasmon absorption of colloidal gold nanoparticles. J Phys Chem B103:4212–4217CrossRefGoogle Scholar
  32. 32.
    Gliga AR, Skoglund S, Wallinder IO, Fadeel B, Karlsson HL (2014) Size-dependent cytotoxicity of silver nanoparticles in human lung cells: the role of cellular uptake, agglomeration and Ag release. Particle Fibre Toxicol 11:11CrossRefGoogle Scholar
  33. 33.
    Miura T, Takeuchi H, Harada I (1988) Characterization of individual tryptophan side chains in proteins using Raman spectroscopy and hydrogen-deuterium exchange kinetics. Biochemistry 27:88–94CrossRefGoogle Scholar
  34. 34.
    Levin CS, Janesko BG, Bardhan R, Scuseria GE, Hartgerink JD, Halas NJ (2006) Chain-length-dependent vibrational resonances in alkanethiol self-assembled monolayers observed on plasmonic nanoparticle substrates. Nano Lett 6:2617–2621CrossRefGoogle Scholar
  35. 35.
    Zhao X, Liu R, Teng Y, Liu X (2011) The interaction between Ag+ and bovine serum albumin: a spectroscopic investigation. Sci of the Tot Envi 409:892–897CrossRefGoogle Scholar
  36. 36.
    Chen RF (1971) Fluorescence quenching due to mercuric ion interaction with aromatic amino acids and proteins. Arch Biochem Biophys 142:552–564CrossRefGoogle Scholar
  37. 37.
    Ulrich KH (1981) Molecular aspects of ligand binding to serum albumin. Pharmacol Rev 33:17–53Google Scholar
  38. 38.
    Pan BF, Gao F, Ao LM (2005) Investigation of interactions between dendrimer-coated magnetite nanoparticles and bovine serum albumin. J. Magnes. Magn. Mater. 293:252–258CrossRefGoogle Scholar
  39. 39.
    Wang YQ, Zhang HM, Zhang GC, Tao WH, Fei ZH, Liu ZT (2007) Spectroscopic studies on the interaction between silicotungstic acid and bovine serum albumin. J Pharm Biomed Anal 43:1869–1875CrossRefGoogle Scholar
  40. 40.
    Lakowicz JR (2006) Principles of fluorescence spectroscopy, 3rd edn. Springer, New YorkCrossRefGoogle Scholar
  41. 41.
    Tedesco AC, Oliveira DM, Lacava ZGM, Azevedo RB, Lima ECD, Morais PC (2004) Investigation of the binding constant and stoichiometry of biocompatible cobalt ferrite-based magnetic fluids to serum albumin. J Magnes Magn Mater 272–276:2404–2405CrossRefGoogle Scholar
  42. 42.
    Cui Y, Wei Q, Park H, Lieber CM (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293:1289–1292CrossRefGoogle Scholar
  43. 43.
    Shang L, Wang Y, Jiang J, Dong S (2007) pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: a spectroscopic study. Langmuir 23:2714–2721CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Physics DepartmentIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.Center for High Energy Systems and Sciences, DRDOHyderabadIndia

Personalised recommendations