, Volume 13, Issue 4, pp 1227–1234 | Cite as

Decorated Core-Shell Architectures: Influence of the Dimensional Properties on Hybrid Resonances

  • Devon A. Boyne
  • Mark H. GriepEmail author


Emerging nanoplasmonics utilizing asymmetric core-shell architectures present opportunities to precisely control the plasmon position and signal amplification within a single particle. In particular, asymmetric gold nanorods, assembled into a “matryoshka” structure (gold nanorod core, silica spacer shell, and outer gold shell) have the unique ability to enhance and precisely manipulate the plasmonic signature when compared to single gold nanorods via the generation of hybridized plasmonic modes. Currently, the fundamental understanding of the impact of the gold nanorod matryoshka dimensional parameters on the subsequent resonance behavior is incomplete. In this work, we elucidate the structural-hybridized resonance relationship of gold nanorod nanomatryoshka designs by experimentally varying the key geometrical properties; including silica spacer thickness, gold nanorod core size, and gold shell thickness/continuity.


Multishell gold nanorod matryoshka Hybrid resonance particles 



The authors would like to thank Dr. Sasha Teymorian, Dr. Abby West and Mrs. Alexis Fakner for their assistance in material synthesis, and Dr. Scott Walck for instruction on the TEM. DB would like to thank ORISE for support through a post-doctoral fellowship.

This research was supported in part by an appointment to the Postgraduate Research Participation Program at the U.S. Army Research Laboratory administered by the Oak Ridge Institute for Science and Education through an interagency agreement between the US Department of Energy and USARL.


  1. 1.
    Chen J, Saeki F, Wiley BJ, Cang H, Cobb MJ, Li ZY et al (2005) Gold Nanocages: Bioconjugation and their potential use as optical imaging contrast agents. Nano Lett 5(3):473–477CrossRefPubMedGoogle Scholar
  2. 2.
    Huang X, El-Sayed IH, Qian W, El-Sayed MA (2006) Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods. JACS 128:2115–2120CrossRefGoogle Scholar
  3. 3.
    Saha K, Agasti SS, Kim C, Li X, Rotello VM (2012) Gold nanoparticles in chemical and biological sensing. Chem Rev 112(5):2739–2779CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Yu P, Blondeau JP, Andreazza C, Ntsoenzok E, Roussel J, Dutheil P et al (2015) Influence of gold nanoparticles (Au NPs) for performance improvement of a-Si:H photovoltaic cells. Plasmonics 10(3):691–701CrossRefGoogle Scholar
  5. 5.
    Fang Y, Sun M (2015) Nanoplasmonic waveguides: towards applications in integrated nanophotonic circuits. Light: Science & Applications: e294Google Scholar
  6. 6.
    Lee KS, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRefPubMedGoogle Scholar
  7. 7.
    O'Brien MN, Jones MR, Kohlstedt KL, Schatz GC, Mirkin CA (2015) Uniform circular disks with synthetically tailorable diameters: two-dimensional nanoparticles for plasmonics. Nano Lett 15:1012–1017CrossRefPubMedGoogle Scholar
  8. 8.
    Gole A, Murphy CJ (2004) Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 16(19):3633–3640CrossRefGoogle Scholar
  9. 9.
    Scarabelli L, Coronado-Puchau M, Giner-Casares JJ, Langer J, Liz-Marzán LM (2014) Monodisperse gold nanotriangles: size control, large-scale self-assembly, and performance in surface-enhanced Raman scattering. ACSnano 8(6):5833–5842Google Scholar
  10. 10.
    Bi G, Wang L, Yokota Y, Nishijima Y, Ueno K, Misawa H et al (2013) Optical properties of gold nano-bowtie structures. Opt Comm 294:213–217CrossRefGoogle Scholar
  11. 11.
    Hu Y, Flemming RC, Drezek RA (2008) Optical properties of gold-silica-gold. Opt Express 16(24):19579–19591CrossRefPubMedGoogle Scholar
  12. 12.
    Xia X, Liu Y, Backman V, Ameer GA (2006) Engineering sub-100 nm multi-layer nanoshells. Nanotechnology 17(21)Google Scholar
  13. 13.
    Chen K, Liu Y, Ameer G, Backman V (2005) Optimal design of structured nanospheres for ultrasharp light-scattering resonances as molecular imaging multilabels. J Biomed Opt 10(2):024005CrossRefPubMedGoogle Scholar
  14. 14.
    Qian J, Li Y, Chen J, Xu J, Sun Q (2014) Localized hybrid plasmon modes reversion in gold−silica−gold multilayer nanoshells. J Phys Chem C 118:8581–8587CrossRefGoogle Scholar
  15. 15.
    Wang H, Wu Y, Lassiter B, Nehl CL, Hafner JH, Norlander P et al (2006) Symmetry breaking in individual plasmonic nanoparticles. PNAS 103(29):10856–10860CrossRefPubMedGoogle Scholar
  16. 16.
    Hu Y, Noelck SJ, Drezek RA (2010) Symmetry breaking in gold-silica-gold multilayer nanoshells. ACSNano 4(3):1521–1528Google Scholar
  17. 17.
    Jain PK, El-Sayed MA (2007) Universal scaling of plasmon coupling in metal nanostructures: extension from particle pairs to nanoshells. Nano Lett 7(9):2854–2858CrossRefPubMedGoogle Scholar
  18. 18.
    Prodan E, Radloff C, Halas NJ, Norlander P (2003) Hybridization model for the plasmon response of complex nanostructures. Science 302:419–422CrossRefPubMedGoogle Scholar
  19. 19.
    Prodan E, Norlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454CrossRefPubMedGoogle Scholar
  20. 20.
    Nghiem THL, Le TN, Do TH, Vu TTD, Do QH, Tran HN (2013) Preparation and characterization of silica–gold core–shell nanoparticles. J Nanopart Res 15:2091CrossRefGoogle Scholar
  21. 21.
    Liang Z, Liu Y, Ng SS, Li X, Lai L, Luo S et al (2011) The effect of pH value on the formation of gold nanoshells. J Nanopart Res 13(8):3301–3311CrossRefGoogle Scholar
  22. 22.
    Hao F, Sonnefraud Y, Van Dorpe P, Maier SA, Halas NJ, Nordlander P (2008) Symmetry breaking in plasmonic nanocavities: subradiant LSPR sensing and tunable Fano resonance. Nano Lett 8:3983–3988CrossRefPubMedGoogle Scholar
  23. 23.
    Liu N, Weiss T, Mesch M, Langguth L, Eigenthaler U, Hirscher M et al (2009) Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing. Nano Lett 10(4):1103–1107CrossRefGoogle Scholar
  24. 24.
    Hinman JG, Stork AJ, Varnell JA, Gewirth AA, Murphy CJ (2016) Seed mediated growth of gold nanorods: towards nanorod matryoshkas. Faraday Discuss 191:9–33CrossRefPubMedGoogle Scholar
  25. 25.
    Vigderman L, Zubarev ER (2013) High-yield synthesis of gold nanorods with longitudinal SPR peak greater than 1200 nm using hydroquinone as a reducing agent. Chem Mater 25(8):1450–1457CrossRefGoogle Scholar
  26. 26.
    Ye X, Jin L, Caglayan H, Chen J, Xing G, Zheng C et al (2012) Improved size-tunable synthesis of monodisperse gold nanorods through the use of aromatic additives. ACSnano 6(3):2804–2817Google Scholar
  27. 27.
    Boyne DA, Savage AM, Griep MH, Beyer FL, Orlicki JA (2017) Process induced alignment of gold nano-rods (GNRs) in thermoplastic polymer composites with tailored optical properties. Polymer 110(10):250–259CrossRefGoogle Scholar
  28. 28.
    Abadeer NS, Brennan MR, Wilson WL, Murphy CJ (2014) Distance and plasmon wavelength dependent fluorescence of molecules bound to silica-coated gold Nanorods. ACSnano 8(8):8392–8406Google Scholar
  29. 29.
    Duff DG, Baiker A (1993) A new hydrosol of gold clusters. 1. Formation and particle size variation. Langmuir 9:2301–2309CrossRefGoogle Scholar
  30. 30.
    Cong H, Toftegaard R, Arnberg J, Ogilby PR (2010) Silica-coated gold nanorods with a gold overcoat: controlling optical properties by controlling the dimensions of a gold−silica−gold layered nanoparticle. Langmuir 26(6):4188–4195CrossRefPubMedGoogle Scholar
  31. 31.
    Rasch MR, Sokolov KV, Korgel BA (2009) Limitations on the optical tunability of small diameter gold nanoshells. Langmuir 25(19):11777–11785CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York (outside the USA) 2017

Authors and Affiliations

  1. 1.U.S. Army Research LaboratoryAberdeen Proving GroundUSA

Personalised recommendations