Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1219–1225 | Cite as

Graphene Doping Induced Tunability of Nanoparticles Plasmonic Resonances

Article

Abstract

Interest in graphene has been widely increasing since its discovery in 2004. Research on graphene for plasmonic applications has also boomed due to the high potential of these systems. In this article, we discuss the possible interaction between metallic NPs and graphene monolayer. We show how the contact between metallic NPs and graphene results in graphene doping. More importantly, we experimentally put into evidence the possible modulation of the plasmonic resonance of NPs by graphene doping. Understanding and evidencing this interaction is highly important both from a fundamental point of view and for specific applications such as active plasmonic devices.

Keywords

Graphene Doping Metallic nanoparticles Plasmonic resonance 

Notes

Acknowledgment

Financial support of NanoMat (www.nanomat.eu) by the “Ministère de l’enseignement supérieur et de la recherche,” the “Conseil régional Champagne-Ardenne,” the “Fonds Européen de Développement Régional (FEDER) fund,” and the “Conseil général de l’Aube” is acknowledged. T. M thanks the DRRT (Délégation Régionale à la Recherche et à la Technologie) of Champagne-Ardenne, the Labex ACTION project (contract ANR-11-LABX-01-01) and the CNRS via the chaire « optical nanosensors » for the financial support. This work was performed in the context of the COST Action MP1302 Nanospectroscopy.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript. RN performed the experimental work and the analysis of the results; GL performed the simulations and the analysis of the results. PMA, GL, and TM supervised this work and the analysis of the results.

References

  1. 1.
    Geim AK, Novoselov KS (2007) The rise of graphene. Nat Mater 6:183–191CrossRefGoogle Scholar
  2. 2.
    Rao CNR, Sood AK, Subrahmanyam KS, Govindaraj A (2009) Graphene: the new two-dimensional nanomaterial. Angew Chem Int Ed 48:7752–7777CrossRefGoogle Scholar
  3. 3.
    Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) The electronic properties of graphene. Rev Mod Phys 81:109–162CrossRefGoogle Scholar
  4. 4.
    Heersche HB, Jarillo-Herrero P, Oostinga JB, Vandersypen LMK, Morpurgo AF (2007) Bipolar supercurrent in graphene. Nature 446:56–59CrossRefGoogle Scholar
  5. 5.
    Novoselov KS et al (2005) Two-dimensional gas of massless Dirac fermions in graphene. Nature 438:197–200CrossRefGoogle Scholar
  6. 6.
    Atwater HA (2007) The promise of plasmonics. Sci Am 296:56–63CrossRefGoogle Scholar
  7. 7.
    Principles of nano-optics. Cambridge University Press Available at: http://www.cambridge.org/us/academic/subjects/physics/optics-optoelectronics-and-photonics/principles-nano-optics-2nd-edition. Accessed 8 Mar 2016
  8. 8.
    Schuller JA et al (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9:193–204CrossRefGoogle Scholar
  9. 9.
    Anker JN et al (2008) Biosensing with plasmonic nanosensors. Nat Mater 7:442–453CrossRefGoogle Scholar
  10. 10.
    Plasmonics, photonics, and materials for sensors and imaging | Institute Of Materials Science & Engineering. Available at: https://imse.wustl.edu/research-plasmonics. Accessed: 22Apr 2016
  11. 11.
    Liang Z, Sun J, Jiang Y, Jiang L, Chen X (2014) Plasmonic enhanced optoelectronic devices. Plasmonics 9:859–866CrossRefGoogle Scholar
  12. 12.
    Lee K-S, El-Sayed MA (2006) Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. J Phys Chem B 110:19220–19225CrossRefGoogle Scholar
  13. 13.
    Guilengui VN, Cerutti L, Rodriguez J-B, Tournié E, Taliercio T (2012) Localized surface plasmon resonances in highly doped semiconductors nanostructures. Appl Phys Lett 101:161113CrossRefGoogle Scholar
  14. 14.
    Nikitin AY, Guinea F, García-Vidal FJ, Martín-Moreno L (2011) Edge and waveguide terahertz surface plasmon modes in graphene microribbons. Phys Rev B 84:161407CrossRefGoogle Scholar
  15. 15.
    Salihoglu O, Balci S, Kocabas C (2012) Plasmon-polaritons on graphene-metal surface and their use in biosensors. Appl Phys Lett 100:213110CrossRefGoogle Scholar
  16. 16.
    Reed JC, Zhu H, Zhu AY, Li C, Cubukcu E (2012) Graphene-enabled silver nanoantenna sensors. Nano Lett 12:4090–4094CrossRefGoogle Scholar
  17. 17.
    Xu G et al (2012) Plasmonic graphene transparent conductors. Adv Mater 24:OP71–OP76CrossRefGoogle Scholar
  18. 18.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749–758CrossRefGoogle Scholar
  19. 19.
    Szunerits S, Maalouli N, Wijaya E, Vilcot J-P, Boukherroub R (2013) Recent advances in the development of graphene-based surface plasmon resonance (SPR) interfaces. Anal Bioanal Chem 405:1435–1443CrossRefGoogle Scholar
  20. 20.
    Choi SH, Kim YL, Byun KM (2011) Graphene-on-silver substrates for sensitive surface plasmon resonance imaging biosensors. Opt Express 19:458–466CrossRefGoogle Scholar
  21. 21.
    Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18:14395–14400CrossRefGoogle Scholar
  22. 22.
    Giovannetti G et al (2008) Doping graphene with metal contacts. Phys Rev Lett 101:026803CrossRefGoogle Scholar
  23. 23.
    Fang Z et al (2012) Plasmon-induced doping of graphene. ACS Nano 6:10222–10228CrossRefGoogle Scholar
  24. 24.
    Gilbertson AM et al (2015) Plasmon-induced optical anisotropy in hybrid graphene–metal nanoparticle systems. Nano Lett 15:3458–3464CrossRefGoogle Scholar
  25. 25.
    Kim J et al (2012) Electrical control of optical plasmon resonance with graphene. Nano Lett 12:5598–5602CrossRefGoogle Scholar
  26. 26.
    Osváth Z et al (2015) The structure and properties of graphene on gold nanoparticles. Nano 7:5503–5509Google Scholar
  27. 27.
    Lee J-K, Sung H, Jang MS, Yoon H, Choi M (2015) Reliable doping and carrier concentration control in graphene by aerosol-derived metal nanoparticles. J Mater Chem C 3:8294–8299CrossRefGoogle Scholar
  28. 28.
    Das A et al (2008) Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat Nanotechnol 3:210–215CrossRefGoogle Scholar
  29. 29.
    Lee J, Novoselov KS, Shin HS (2011) Interaction between metal and graphene: dependence on the layer number of graphene. ACS Nano 5:608–612CrossRefGoogle Scholar
  30. 30.
    Maiti R, Haldar S, Majumdar D, Singha A, Ray SK (2017) Hybrid opto-chemical doping in Ag nanoparticle-decorated monolayer graphene grown by chemical vapor deposition probed by Raman spectroscopy. Nanotechnology 28:075707CrossRefGoogle Scholar
  31. 31.
    Paulus M, Gay-Balmaz P, Martin OJF (2000) Accurate and efficient computation of the Green’s tensor for stratified media. Phys Rev E 62:5797–5807CrossRefGoogle Scholar
  32. 32.
    Chaumet PC, Rahmani A, Bryant GW (2003) Generalization of the coupled dipole method to periodic structures. Phys Rev B 67:165404CrossRefGoogle Scholar
  33. 33.
    Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  34. 34.
    Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Appl Phys Lett 94:031901CrossRefGoogle Scholar
  35. 35.
    Dawlaty JM et al (2008) Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible. Appl Phys Lett 93:131905CrossRefGoogle Scholar
  36. 36.
    Gusynin VP, Sharapov SG, Carbotte JP (2007) Sum rules for the optical and hall conductivity in graphene. Phys Rev B 75:165407CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Laboratory of Nanotechnology and Optical Instrumentation, UMR 6281 STMRTechnological University of TroyesTroyesFrance
  2. 2.LIDYL, CEA, CNRSUniversité Paris-SaclayGif Sur-YvetteFrance
  3. 3.Institut d’Electronique, de Microélectronique et de Nanotechnologie (IEMN, CNRS-8520), Cité ScientifiqueVilleneuve d’AscqFrance

Personalised recommendations