Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1201–1207 | Cite as

A Research of Nonreciprocal Transmission of Graphene Defect

  • Yu-Jie Liu
  • Ze-Kun Yang
  • Jiong-Ju Hao
  • Bao-Liang Ma
  • Yun Zhang
  • Hong-Wei Yang
Article
  • 101 Downloads

Abstract

In this paper, modified transmission matrix method is used to construct one-dimensional multilayer composite membrane structure doped with graphene defect. The optimal construction can be found to realize reciprocity transmission by comparing the influence of the time inversion-symmetry and space inversion-symmetry doped on nonreciprocal transmission. The simulation results show that it cannot ensure the nonreciprocal transmission with rotatory material only. Nonreciprocal transmission should be designed through the structure damage of the space inversion-symmetry to realize it. The structure absorption peak position will move to the direction of the wavelength increase along with the increase of thickness of rotation media. The structure shows the approximate perfect absorption characteristics.

Keywords

Graphene Nonreciprocal transmission Transmission matrix method Rotation media 

Notes

Acknowledgments

This work is supported by the Fundamental Research Funds for the Central Universities (Grant No. KYZ201321) and the College of Sciences of Nanjing Agricultural University (Grant No. CoS201410).

References

  1. 1.
    Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20):207402–207404CrossRefGoogle Scholar
  2. 2.
    Greffet J-J, Carminati R, Joulain K, Mulet J-P, Mainguy S, Chen Y (2002) Coherent emission of light by thermal sources. Nature 416(6876):61–64CrossRefGoogle Scholar
  3. 3.
    Kim PC, Lee DG (2009) Composite sandwich constructions for absorbing the electromagnetic waves. Compos Struct 87(2):161–167CrossRefGoogle Scholar
  4. 4.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10(7):2342–2348CrossRefGoogle Scholar
  5. 5.
    Shu S, Li Z, Li YY (2013) Triple-layer Fabry-Perot absorber with nearperfect absorption in visible and near-infrared regime. Opt Express 21(21):25307–25315CrossRefGoogle Scholar
  6. 6.
    Diem M, Koschny T, Soukoulis CM (2009) Wide-angle perfect absorber/thermal emitter in the terahertz regime. Phys Rev B 79(3):033101–033104CrossRefGoogle Scholar
  7. 7.
    Schedin F, Lidorikis E, Lombardo A, Kravets VG, Geim AK, Grigorenko AN, Novoselov KS, Ferrari AC (2010) Surface-enhanced Raman spectroscopy of grapheme. ACS Nano 4(10):5617–5626CrossRefGoogle Scholar
  8. 8.
    Shao-Juan L, Sheng G, Hao-Ran M, Xu Q-Y, Hong Q, Peng-Fei L, Xue Y-Z, Qiao-Liang B (2014) Research progress in graphene use in photonic and optoelectronic devices (in Chinese). New Carbon Materials 29(5):329–356Google Scholar
  9. 9.
    Lu S, Xiaogang C, Xianfeng C, Bin T (2015) TE polarization perfect absorption with dual-band in metal-photonic crystal-metal structure (in Chinese). Acta Opt Sin 35(1):0116003–0116006CrossRefGoogle Scholar
  10. 10.
    Khanikaev AB, Steel MJ (2009) Low-symmetry magnetic photonic crystals for nonreciprocal and unidirectional devices. Opt Express 17(7):5265–5272CrossRefGoogle Scholar
  11. 11.
    Dong HY, Wang J, Cui TJ (2013) One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides. Phys Rev B 87(4):045406–045405CrossRefGoogle Scholar
  12. 12.
    Ma Rongkun, Wang Jijun, Fang Yuntuan (2016) Transfer matrix method of one-dimensional photonic crystal composed of gyromagnetic materials (in Chinese). Laser & optoelectronics progress 53(1):011601–011605.Google Scholar
  13. 13.
    Cheng He (2011) Nonreciprocal properties in photonic crystals (In Chinese). Ph.D. dissertation, Nanjing University, NanjingGoogle Scholar
  14. 14.
    Hashemi M, Farzad MH, Asger Mortensen N, Xiao S (2013) Enhanced absorption of graphene in the visible region by use of plasmonic nanostructures. J Opt 15:055003–055005CrossRefGoogle Scholar
  15. 15.
    Liu J-T, Liu N-H, Li J, Li XJ, Huang J-H (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101:052104–052103CrossRefGoogle Scholar
  16. 16.
    Chen Ying-Liang, Feng Xiao-Bo, Hou De-Dong (2013) Optical absorptions in monolayer and bilayer grapheme (in Chinese). Acta Phys Sin 62(18):187301–187306.Google Scholar
  17. 17.
    Liu Y-J, Xie X, Xie L, Yang Z-K, Yang H-W (2016) Dual-band absorption characteristics of one-dimensional photonic crystal with graphene-based defect. Optik 127(9):3945–3948CrossRefGoogle Scholar
  18. 18.
    Zhang Y, Xie L, Hao J-J, Liu Y-J, Ma B-L, Xu Z-G, Yang H-W (2017) A new method study of spectral measurement and prediction based on the nonlinear solution concentration of alcohol. Physica B 516(1):32–35Google Scholar
  19. 19.
    Yang HW (2011) Simulation and analysis of interaction between oblique incidence electromagnetic wave and plasma slab. Optik 122(11):945–948CrossRefGoogle Scholar
  20. 20.
    Fang Y-t, Chen L-k, Zheng J, Zhou L-y, Zhou J (2014) Nonreciprocal channels of light through the coupling of two nonsymmetric Tamm magnetoplasmon polaritons. IEEE photonics journal 6(4):4801611–4801611Google Scholar
  21. 21.
    Fang Y-t (2014) Tunable nonreciprocal tunneling based on nonsymmetric magnetoplasmonic resonance structure. Plasmonics 9(5):1133–1141CrossRefGoogle Scholar
  22. 22.
    Yeh P (1998) Optical waves in layered media. John Wiley & Sons, New YorkGoogle Scholar
  23. 23.
    Fang Y-T, He H-Q, Lin Z-L (2015) Nonreciprocal perfect absorber based on an ultra-compact nonsymmetry cavity structure. International journal of modern physics B 29(3):1550001–1550013CrossRefGoogle Scholar
  24. 24.
    Ma Rongkun, Tang Yueming, Wang Jijun, Zheng Zhaowen, Fang Yuntuan (2016) One-way absorber based on coupling of magnetic surface plasmonic resonances (in Chinese). Chinese journal of lasers 43(1):0117001–0117006.Google Scholar
  25. 25.
    Bruna M, Borini S (2009) Optical constants of graphene layers in the visible range. Applied physics letter 94(3):031901–031903CrossRefGoogle Scholar
  26. 26.
    Vincenti MA, de Ceglia D, Grande M, D’Orazio A, Scalora M (2013) Nonlinear control of absorption in one-dimensional photonic crystal with graphene-based defect. Opt Lett 38(18):3550–3553CrossRefGoogle Scholar
  27. 27.
    Palik ED (1997) Handbook of optical constants of solids. Academic, New YorkGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Yu-Jie Liu
    • 1
  • Ze-Kun Yang
    • 2
  • Jiong-Ju Hao
    • 1
  • Bao-Liang Ma
    • 1
  • Yun Zhang
    • 1
    • 3
  • Hong-Wei Yang
    • 1
  1. 1.Department of Physics, College of ScienceNanjing Agricultural UniversityNanjingPeople’s Republic of China
  2. 2.School of Information Science & EngineeringLanzhou UniversityLanzhouPeople’s Republic of China
  3. 3.School of Electromechanical TechnologyWuxi Institute of CommerceWuxiPeople’s Republic of China

Personalised recommendations