Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1165–1170 | Cite as

A Novel Diamond Ring Fiber-Based Surface Plasmon Resonance Sensor

  • Wee Lit Ng
  • Ahmmed A. Rifat
  • Wei Ru Wong
  • G. A. Mahdiraji
  • F. R. Mahamd Adikan
Article

Abstract

We propose a highly sensitive novel diamond ring fiber (DRF)-based surface plasmon resonance (SPR) sensor for refractive index sensing. Chemically active plasmonic material (gold) layer is coated inside the large cavity of DRF, and the analyte is infiltrated directly through the fiber instead of selective infiltration. The light guiding properties and sensing performances are numerically investigated using the finite element method (FEM). The proposed sensor shows a maximum wavelength and amplitude interrogation sensitivity of 6000 nm/RIU and 508 RIU−1, respectively, over the refractive index range of 1.33–1.39. Additionally, it also shows a sensor resolution of 1.67 × 10−5 and 1.97 × 10−5 RIU by following the wavelength and amplitude interrogation methods, respectively. The proposed diamond ring fiber has been fabricated following the standard stack-and-draw method to show the feasibility of the proposed sensor. Due to fabrication feasibility and promising results, the proposed DRF SPR sensor can be an effective tool in biochemical and biological analyte detection.

Keywords

Surface plasmon resonance Fiber optics Optical fiber sensor 

References

  1. 1.
    Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539CrossRefGoogle Scholar
  2. 2.
    Wong WR, Krupin O, Sekaran SD, Mahamd Adikan FR, Berini P (2014) Serological diagnosis of dengue infection in blood plasma using long-range surface plasmon waveguides. Anal Chem 86(3):1735–1743CrossRefGoogle Scholar
  3. 3.
    Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA, Yun SH, Adikan FM (2016) Photonic crystal fiber based plasmonic sensors. Sensors Actuators B Chem 243:311–325CrossRefGoogle Scholar
  4. 4.
    Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors Actuators 4:299–304CrossRefGoogle Scholar
  5. 5.
    Robinson G (1995) The commercial development of planar optical biosensors. Sensors Actuators B Chem 29(1):31–36CrossRefGoogle Scholar
  6. 6.
    Rao Y, Zhu T A highly sensitive fiber-optic refractive index sensor based on an edge-written long-period fiber grating. In: Bragg Gratings, Photosensitivity, and Poling in Glass Waveguides, 2007. Optical Society of America, p JWA53Google Scholar
  7. 7.
    Zhao Y, X-g L, Cai L, Yang Y (2015) Refractive index sensing based on photonic crystal fiber interferometer structure with up-tapered joints. Sensors Actuators B Chem 221:406–410CrossRefGoogle Scholar
  8. 8.
    Iadicicco A, Cusano A, Cutolo A, Bernini R, Giordano M (2004) Thinned fiber Bragg gratings as high sensitivity refractive index sensor. IEEE Photon Technol Lett 16(4):1149–1151CrossRefGoogle Scholar
  9. 9.
    Ahmed R, Rifat AA, Yetisen AK, Yun SH, Khan S, Butt H (2016) Mode-multiplexed waveguide sensor. Journal of Electromagnetic Waves and Applications 30(4):444–455CrossRefGoogle Scholar
  10. 10.
    Zhao Y, Cai L, Li X-G, Meng F-C, Zhao Z (2014) Investigation of the high sensitivity RI sensor based on SMS fiber structure. Sensors Actuators A Phys 205:186–190CrossRefGoogle Scholar
  11. 11.
    Jorgenson R, Yee S (1993) A fiber-optic chemical sensor based on surface plasmon resonance. Sensors Actuators B Chem 12(3):213–220CrossRefGoogle Scholar
  12. 12.
    Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14(24):11616–11621CrossRefGoogle Scholar
  13. 13.
    Shuai B, Xia L, Liu D (2012) Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt Express 20(23):25858–25866CrossRefGoogle Scholar
  14. 14.
    Gao D, Guan C, Wen Y, Zhong X, Yuan L (2014) Multi-hole fiber based surface plasmon resonance sensor operated at near-infrared wavelengths. Opt Commun 313:94–98CrossRefGoogle Scholar
  15. 15.
    Dash JN, Jha R (2014) SPR biosensor based on polymer PCF coated with conducting metal oxide. IEEE Photon Technol Lett 26(6):595–598CrossRefGoogle Scholar
  16. 16.
    Wang F, Sun Z, Liu C, Sun T, Chu PK (2016) A highly sensitive dual-core photonic crystal fiber based on a surface plasmon resonance biosensor with silver-graphene layer. Plasmonics:1–7Google Scholar
  17. 17.
    An G, Li S, Yan X, Zhang X, Yuan Z, Wang H, Zhang Y, Hao X, Shao Y, Han Z (2016) Extra-broad photonic crystal fiber refractive index sensor based on surface plasmon resonance. Plasmonics:1–7Google Scholar
  18. 18.
    Rifat A, Mahdiraji G, Chow D, Shee Y, Ahmed R, Adikan F (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5):11499–11510CrossRefGoogle Scholar
  19. 19.
    Dash JN, Jha R (2015) On the performance of graphene-based D-shaped photonic crystal fibre biosensor using surface plasmon resonance. Plasmonics 10(5):1123–1131CrossRefGoogle Scholar
  20. 20.
    Tian M, Lu P, Chen L, Lv C, Liu D (2012) All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt Commun 285(6):1550–1554CrossRefGoogle Scholar
  21. 21.
    Otupiri R, Akowuah E, Haxha S, Ademgil H, AbdelMalek F, Aggoun A (2014) A novel birefrigent photonic crystal fiber surface plasmon resonance biosensor. IEEE Photonics Journal 6(4):1–11CrossRefGoogle Scholar
  22. 22.
    Rifat A, Mahdiraji GA, Sua Y, Shee Y, Ahmed R, Chow DM, Adikan FM (2015) Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photon Technol Lett 27(15):1628–1631CrossRefGoogle Scholar
  23. 23.
    Hameed MFO, Alrayk YK, Shaalan AA, El Deeb WS, Obayya SS (2016) Design of highly sensitive multichannel bimetallic photonic crystal fiber biosensor. Journal of Nanophotonics 10(4):046016–046016CrossRefGoogle Scholar
  24. 24.
    Hasan MR, Akter S, Rifat AA, Rana S, Ali S A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. In: Photonics, 2017. vol 1. Multidisciplinary Digital Publishing Institute, p 18Google Scholar
  25. 25.
    Ng WL, Wong WR, Amouzad Mahdiraji G, Rifat AA, Tee DC, Mahamd Adikan FR (2017) Diamond ring fiber for evanescent field exposure. Opt Lett 42(8):1544–1547. doi: 10.1364/OL.42.001544 CrossRefGoogle Scholar
  26. 26.
    Sazio PJ, Amezcua-Correa A, Finlayson CE, Hayes JR, Scheidemantel TJ, Baril NF, Jackson BR, Won D-J, Zhang F, Margine ER (2006) Microstructured optical fibers as high-pressure microfluidic reactors. Science 311(5767):1583–1586CrossRefGoogle Scholar
  27. 27.
    Boehm J, François A, Ebendorff-Heidepriem H, Monro TM (2011) Chemical deposition of silver for the fabrication of surface plasmon microstructured optical fibre sensors. Plasmonics 6(1):133–136CrossRefGoogle Scholar
  28. 28.
    Wu C, Tse M-LV, Liu Z, Guan B-O, Lu C, Tam H-Y (2013) In-line microfluidic refractometer based on C-shaped fiber assisted photonic crystal fiber Sagnac interferometer. Opt Lett 38(17):3283–3286CrossRefGoogle Scholar
  29. 29.
    Tatian B (1984) Fitting refractive-index data with the Sellmeier dispersion formula. Appl Opt 23(24):4477–4485. doi: 10.1364/AO.23.004477 CrossRefGoogle Scholar
  30. 30.
    Vial A, Grimault A-S, Macías D, Barchiesi D, de la Chapelle ML (2005) Improved analytical fit of gold dispersion: application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416CrossRefGoogle Scholar
  31. 31.
    Amouzad Mahdiraji G, Chow DM, Sandoghchi SR, Amirkhan F, Dermosesian E, Yeo KS, Kakaei Z, Ghomeishi M, Poh SY, Yu Gang S, Mahamd Adikan FR (2014) Challenges and solutions in fabrication of silica-based photonic crystal fibers: an experimental study. Fiber and Integrated Optics 33(1–2):85–104. doi: 10.1080/01468030.2013.879680 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Wee Lit Ng
    • 1
  • Ahmmed A. Rifat
    • 2
  • Wei Ru Wong
    • 1
  • G. A. Mahdiraji
    • 3
    • 4
  • F. R. Mahamd Adikan
    • 1
    • 4
  1. 1.Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia
  2. 2.School of Engineering and Information TechnologyUniversity of New South WalesCanberraAustralia
  3. 3.School of EngineeringTaylor’s UniversitySubang JayaMalaysia
  4. 4.Flexilicate Sdn. Bhd.University of MalayaKuala LumpurMalaysia

Personalised recommendations