Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1159–1163 | Cite as

High Optical Transmission in a Hybrid Plasmonic-Optical Structure with a Continuous Metal Film

  • Zongpeng Wang
  • Yumin Hou
Article
  • 213 Downloads

Abstract

Metals are naturally opaque for electromagnetic (EM) waves below violet frequency due to the Coulomb screening effect. In this letter, we demonstrate high optical transparency of a seamless continuous metal film by sandwiching it in a hybrid plasmonic-optical structure. The proposed structure consists of a plasmonic array and an optical cavity, which exhibits magnetic plasmon (MP) resonance and optical Fabry-Perot (FP) resonance, respectively. An optical transparency of 84% in the near-IR regime is achieved making use of interaction between the plasmonic and optical modes. Furthermore, spectral tunability of the high transparency is demonstrated and robustness under oblique incidence is examined. This work may give insights into plasmonic-optical interactions and may be a potential candidate for transparent electrodes.

Keywords

Extraordinary optical transmission Magnetic plasmon Continuous metallic film Fabry-Perot resonance Hybrid structure 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61575006).

References

  1. 1.
    Kang MG, Kim MS, Kim J, Guo LJ (2008) Organic solar cells using nanoimprinted transparent metal electrodes. Adv Mater 20(23):4408–4413CrossRefGoogle Scholar
  2. 2.
    Minami T (2008) Present status of transparent conducting oxide thin-film development for indium-tin-oxide (ITO) substitutes. Thin Solid Films 516(17):5822–5828CrossRefGoogle Scholar
  3. 3.
    Elbahri M, Hedayati MK, Chakravadhanula K, Sai V, Jamali M, Strunkus T, Zaporojtchenko V, Faupel F (2011) An omnidirectional transparent conducting-metal-based plasmonic nanocomposite. Adv Mater 23(17):1993–1997CrossRefGoogle Scholar
  4. 4.
    Martín-Moreno L, García-Vidal FJ, Lezec HJ, Pellerin KM, Thio T, Pendry JB, Ebbesen TW (2001) Theory of extraordinary optical transmission through subwavelength hole arrays. Phys Rev Lett 86(6):1114–1117CrossRefGoogle Scholar
  5. 5.
    Chan H, Marcet Z, Woo K, Tanner D, Carr D, Bower J, Cirelli R, Ferry E, Klemens F, Miner J (2006) Optical transmission through double-layer metallic subwavelength slit arrays. Opt Lett 31(4):516–518CrossRefGoogle Scholar
  6. 6.
    Ruan Z, Qiu M (2006) Enhanced transmission through periodic arrays of subwavelength holes: the role of localized waveguide resonances. Phys Rev Lett 96(23):233901CrossRefGoogle Scholar
  7. 7.
    Liu H, Lalanne P (2008) Microscopic theory of the extraordinary optical transmission. Nature 452(7188):728–731CrossRefGoogle Scholar
  8. 8.
    Rodrigo SG, García-Vidal FJ, Martín-Moreno L (2008) Influence of material properties on extraordinary optical transmission through hole arrays. Phys Rev B 77(7):075401CrossRefGoogle Scholar
  9. 9.
    Garcia-Vidal FJ, Martin-Moreno L, Ebbesen TW, Kuipers L (2010) Light passing through subwavelength apertures. Rev Mod Phys 82(1):729–787CrossRefGoogle Scholar
  10. 10.
    Janipour M, Sendur K (2016) Optical transmission enhancement of stacked plasmonic apertures. J Lightwave Technol 34(3):961–968CrossRefGoogle Scholar
  11. 11.
    Sangiao S, Freire F, Fd L-P, Rodrigo SG, Teresa JMD (2016) Plasmonic control of extraordinary optical transmission in the infrared regime. Nanotechnology 27(50):505202CrossRefGoogle Scholar
  12. 12.
    Guo H, Lin N, Chen Y, Wang Z, Xie Q, Zheng T, Gao N, Li S, Kang J, Cai D, Peng D-L (2013) Copper nanowires as fully transparent conductive electrodes. Sci Rep 3:2323CrossRefGoogle Scholar
  13. 13.
    Wu H, Kong D, Ruan Z, Hsu P-C, Wang S, Yu Z, Carney TJ, Hu L, Fan S, Cui Y (2013) A transparent electrode based on a metal nanotrough network. Nat Nanotechnol 8(6):421–425CrossRefGoogle Scholar
  14. 14.
    Gao T, Wang B, Ding B, Lee J-k, Leu PW (2014) Uniform and ordered copper nanomeshes by microsphere lithography for transparent electrodes. Nano Lett 14(4):2105–2110CrossRefGoogle Scholar
  15. 15.
    Nam S, Song M, Kim D-H, Cho B, Lee HM, Kwon J-D, Park S-G, Nam K-S, Jeong Y, Kwon S-H, Park YC, Jin S-H, Kang J-W, Jo S, Kim CS (2014) Ultrasmooth, extremely deformable and shape recoverable Ag nanowire embedded transparent electrode. Sci Rep 4:4788CrossRefGoogle Scholar
  16. 16.
    Liu Z, Liu G, Huang S, Liu X, Huang H, Wang Y, Pan P, Gu G (2015) A simple strategy for tuning the opaque metal film to BE optical transparency by the dielectric cavity. Mater Lett 160:518–521CrossRefGoogle Scholar
  17. 17.
    Hao J, Qiu C-W, Qiu M, Zouhdi S (2012) Design of an ultrathin broadband transparent and high-conductive screen using plasmonic nanostructures. Opt Lett 37(23):4955–4957CrossRefGoogle Scholar
  18. 18.
    Chen Y, Liu G, Huang K, Hu Y, Zhang X, Cai Z (2013) Enhanced transmission of a plasmonic ellipsoid array via combining with double continuous metal films. Opt Commun 311:100–106CrossRefGoogle Scholar
  19. 19.
    Liu Z, Liu G-P, Huang K, Chen Y, Hu Y, Zhang X, Cai Z (2013) Enhanced optical transmission of a continuous metal film with double metal cylinder arrays. IEEE Photon Technol Lett 25(12):1157–1160CrossRefGoogle Scholar
  20. 20.
    Zhao D, Gong H, Yang Y, Li Q, Qiu M (2013) Realization of an extraordinary transmission window for a seamless Ag film based on metal-insulator-metal structures. Appl Phys Lett 102(20):201109CrossRefGoogle Scholar
  21. 21.
    Hu Y, G-q L, Z-q L, Y-h C, X-n Z, Z-j C, X-s L (2014) Robust double-spectral transparency of double mutually staggered plasmonic arrays sandwiched by two continuous metal films. Opt Commun 321:219–225CrossRefGoogle Scholar
  22. 22.
    Liu G-q HY, Z-q L, Y-h C, Z-j C, X-n Z, Huang K (2014) Robust multispectral transparency in continuous metal film structures via multiple near-field plasmon coupling by a finite-difference time-domain method. Phys Chem Chem Phys 16(9):4320–4328CrossRefGoogle Scholar
  23. 23.
    Wang W, Zhao D, Chen Y, Gong H, Chen X, Dai S, Yang Y, Li Q, Qiu M (2014) Grating-assisted enhanced optical transmission through a seamless gold film. Opt Express 22(5):5416–5421CrossRefGoogle Scholar
  24. 24.
    Liu Z, Liu G, Liu M, Huang S, Liu X, Wang Y, Pan P (2015) Making a conducting metal with optical transparency via coupled plasmonic-photonic nanostructures. Plasmonics 10(5):1195–1200CrossRefGoogle Scholar
  25. 25.
    Wang Z, Hou Y, Li W, Li X, Cai A (2016) Tunnel light through a continuous optically thick metal film utilizing higher order magnetic plasmon resonance. Plasmonics 11(6):1445–1450. doi: 10.1007/s11468-016-0195-4 CrossRefGoogle Scholar
  26. 26.
    Zhang L, Hao J, Ye H, Yeo SP, Qiu M, Zouhdi S, Qiu CW (2013) Theoretical realization of robust broadband transparency in ultrathin seamless nanostructures by dual blackbodies for near infrared light. Nano 5(8):3373–3379Google Scholar
  27. 27.
    Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6(12):4370CrossRefGoogle Scholar
  28. 28.
    Chettiar UK, Kildishev AV, Klar TA, Shalaev VM (2006) Negative index metamaterial combining magnetic resonators with metal films. Opt Express 14(17):7872–7877CrossRefGoogle Scholar
  29. 29.
    Ekinci Y, Christ A, Agio M, Martin O, Solak H, Löffler J (2008) Electric and magnetic resonances in arrays of coupled gold nanoparticle in-tandem pairs. Opt Express 16(17):13287–13295CrossRefGoogle Scholar
  30. 30.
    Hou Y (2013) Coherence of magnetic resonators in a metamaterial. AIP Adv 3(12):122119CrossRefGoogle Scholar
  31. 31.
    Tang CJ, Zhan P, Cao ZS, Pan J, Chen Z, Wang ZL (2011) Magnetic field enhancement at optical frequencies through diffraction coupling of magnetic plasmon resonances in metamaterials. Phys Rev B 83(4):041402CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.State Key Laboratory for Mesoscopic Physics, School of PhysicsPeking UniversityBeijingChina

Personalised recommendations