, Volume 13, Issue 4, pp 1153–1158 | Cite as

Broadband Terahertz Absorption in Graphene-Embedded Photonic Crystals

  • Yuancheng FanEmail author
  • Luqi Tu
  • Fuli Zhang
  • Quanhong Fu
  • Zhengren Zhang
  • Zeyong Wei
  • Hongqiang Li


The absorption in graphene is rather low at terahertz frequencies. Here, we present a graphene-embedded photonic crystal structure to realize broadband terahertz absorption in graphene. The approach provides absorption enhancement in the whole terahertz regime (from 0.1 to 10 THz). It is shown that the average absorption in the graphene-embedded photonic crystal can be enhanced in the multiple propagating bands of the photonic crystals. The absorption efficiency can be further improved by optimizing the characteristic frequency, optical thickness ratio in a unit cell, and the angle of incidence on the photonic crystals. A maximum broadband absorption factor of 28.8% was achieved for fixed alternative dielectric materials. The graphene-embedded photonic crystal is promising for terahertz functional devices with broadband response.


Graphene Photonic crystals Terahertz absorption Surface conductivity 



The authors would like to acknowledge financial support from the National Science Foundation of China (NSFC) (Grants No. 11674266, 11372248, 61505164, 11404213, 11674248, 11504034), the Program for Scientific Activities of Selected Returned Overseas Professionals in Shaanxi Province, the Shaanxi Project for Young New Star in Science and Technology (Grant No. 2015KJXX-11), the Fundamental Research Funds for the Central Universities, the Chongqing Research Program of Basic Research and Frontier Technology (Grant No. cstc2016jcyjA0186), and the Scientific and Technological Research Program of Chongqing Municipal Education Commission (Grant No. KJ1600515).


  1. 1.
    Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photon 4(9):611–622CrossRefGoogle Scholar
  2. 2.
    Koppens FHL, Chang DE, García de Abajo FJ (2011) Graphene Plasmonics: A Platform for Strong Light Matter Interactions. Nano Lett 11(8):3370–3377CrossRefPubMedGoogle Scholar
  3. 3.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332(6035):1291–1294CrossRefPubMedGoogle Scholar
  4. 4.
    Tassin P, Koschny T, Soukoulis CM (2013) Graphene for terahertz applications. Science 341(6146):620–621CrossRefPubMedGoogle Scholar
  5. 5.
    Low T, Chaves A, Caldwell JD, Kumar A, Fang NX, Avouris P, Heinz TF, Guinea F, Martin-Moreno L, Koppens F (2017) Polaritons in layered two-dimensional materials. Nat Mater 16(2):182–194CrossRefPubMedGoogle Scholar
  6. 6.
    Wunsch B, Stauber T, Sols F, Guinea F (2006) Dynamical polarization of graphene at finite doping. New J Phys 8(12):318CrossRefGoogle Scholar
  7. 7.
    Gusynin VP, Sharapov SG, Carbotte JP (2007) Magneto-optical conductivity in graphene. J Phys Condens Matter 19(2):026222CrossRefGoogle Scholar
  8. 8.
    Hwang EH, Das Sarma S (2007) Dielectric function, screening, and plasmons in two-dimensional graphene. Phys Rev B 75(20):205418CrossRefGoogle Scholar
  9. 9.
    Horng J, Chen C-F, Geng B, Girit C, Zhang Y, Hao Z, Bechtel HA, Martin M, Zettl A, Crommie MF, Shen YR, Wang F (2011) Drude conductivity of Dirac fermions in graphene. Phys Rev B 83(16):165113CrossRefGoogle Scholar
  10. 10.
    Chen H-T, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600CrossRefPubMedGoogle Scholar
  11. 11.
    Driscoll T, Kim H-T, Chae B-G, Kim B-J, Lee Y-W, Jokerst NM, Palit S, Smith DR, Di Ventra M, Basov DN (2009) Memory metamaterials. Science 325(5947):1518–1521CrossRefPubMedGoogle Scholar
  12. 12.
    Gu J, Singh R, Liu X, Zhang X, Ma Y, Zhang S, Maier SA, Tian Z, Azad AK, Chen H-T, Taylor AJ, Han J, Zhang W (2012) Active control of electromagnetically induced transparency analogue in terahertz metamaterials. Nat Commun 3:1151CrossRefPubMedGoogle Scholar
  13. 13.
    Cheng H, Chen S, Yu P, Liu W, Li Z, Li J, Xie B, Tian J (2015) Dynamically Tunable Broadband Infrared Anomalous Refraction Based on Graphene Metasurfaces. Adv Opt Mater 3(12):1744–1749CrossRefGoogle Scholar
  14. 14.
    Zhang FL, Feng SQ, Qiu KP, Liu ZJ, Fan YC, Zhang WH, Zhao Q, Zhou J (2015) Mechanically stretchable and tunable metamaterial absorber. Appl Phys Lett 106(9):091907CrossRefGoogle Scholar
  15. 15.
    Fan Y, Qiao T, Zhang F, Fu Q, Dong J, Kong B, Li H (2017) An electromagnetic modulator based on electrically controllable metamaterial analogue to electromagnetically induced transparency. Sci Rep 7:40441CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Nair RR, Blake P, Grigorenko AN, Novoselov KS, Booth TJ, Stauber T, Peres NMR, Geim AK (2008) Fine structure constant defines visual transparency of graphene. Science 320(5881): 1308CrossRefPubMedGoogle Scholar
  17. 17.
    Fan Y, Wei Z, Zhang Z, Li H (2013) Enhancing infrared extinction and absorption in a monolayer graphene sheet by harvesting the electric dipolar mode of split ring resonators. Opt Lett 38(24):5410–5413CrossRefPubMedGoogle Scholar
  18. 18.
    Papasimakis N, Thongrattanasiri S, Zheludev NI, García de Abajo FJ (2013) The magnetic response of graphene split-ring metamaterials. Light Sci Appl 2:e78CrossRefGoogle Scholar
  19. 19.
    Fan Y, Shen N-H, Koschny T, Soukoulis CM (2015) Tunable terahertz meta-surface with graphene cut-wires. ACS Photonics 2(1):151–156CrossRefGoogle Scholar
  20. 20.
    Longhi S (2010) PT-symmetric laser absorber. Phys Rev A 82(3):031801CrossRefGoogle Scholar
  21. 21.
    Wan W, Chong Y, Ge L, Noh H, Stone AD, Cao H (2011) Time-Reversed Lasing and Interferometric Control of Absorption. Science 331(6019):889–892CrossRefPubMedGoogle Scholar
  22. 22.
    Zhang J, MacDonald KF, Zheludev NI (2012) Controlling light-with-light without nonlinearity. Light Sci Appl 1:e18CrossRefGoogle Scholar
  23. 23.
    Fan Y, Zhang F, Zhao Q, Wei Z, Li H (2014) Tunable terahertz coherent perfect absorption in a monolayer graphene. Opt Lett 39(21):6269–6272CrossRefPubMedGoogle Scholar
  24. 24.
    Fan Y, Liu Z, Zhang F, Zhao Q, Wei Z, Fu Q, Li J, Gu C, Li H (2015) Tunable mid-infrared coherent perfect absorption in a graphene meta-surface. Sci Rep 5:13956CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Wong ZJ, Xu Y-L, Kim J, O’Brien K, Wang Y, Feng L, Zhang X (2016) Lasing and anti-lasing in a single cavity. Nat Photon 10(12):796–801CrossRefGoogle Scholar
  26. 26.
    Smith DR, Pendry JB, Wiltshire MCK (2004) Metamaterials and Negative Refractive Index. Science 305(5685):788– 792CrossRefPubMedGoogle Scholar
  27. 27.
    Soukoulis CM, Wegener M (2011) Past achievements and future challenges in the development of three-dimensional photonic metamaterials. Nat Photon 5(9):523–530CrossRefGoogle Scholar
  28. 28.
    Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar Photonics with Metasurfaces. Science 339 (6125):1232009CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13(2):139–150CrossRefPubMedGoogle Scholar
  30. 30.
    Chen P-Y, Alù A (2011) Atomically thin surface cloak using graphene monolayers. ACS Nano 5 (7):5855–5863CrossRefPubMedGoogle Scholar
  31. 31.
    Ju L, Geng B, Horng J, Girit C, Martin M, Hao Z, Bechtel H A, Liang X, Zettl A, Shen YR, Wang F (2011) Graphene plasmonics for tunable terahertz metamaterials. Nat Nanotechnol 6(10):630–634CrossRefPubMedGoogle Scholar
  32. 32.
    Alaee R, Farhat M, Rockstuhl C, Lederer F (2012) A perfect absorber made of a graphene micro-ribbon metamaterial. Opt Express 20(27):28017–28024CrossRefPubMedGoogle Scholar
  33. 33.
    Liu P, Cai W, Wang L, Zhang X, Xu J (2012) Tunable terahertz optical antennas based on graphene ring structures. Appl Phys Lett 100(15):153111CrossRefGoogle Scholar
  34. 34.
    Thongrattanasiri S, Koppens FHL, García de Abajo FJ (2012) Complete Optical Absorption in Periodically Patterned Graphene. Phys Rev Lett 108(4):047401CrossRefPubMedGoogle Scholar
  35. 35.
    Cheng H, Chen S, Yu P, Li J, Deng L, Tian J (2013) Mid-infrared tunable optical polarization converter composed of asymmetric graphene nanocrosses. Opt Lett 38(9):1567–1569CrossRefPubMedGoogle Scholar
  36. 36.
    He S, Zhang X, He Y (2013) Graphene nano-ribbon waveguides of record-small mode area and ultra-high effective refractive indices for future VLSI. Opt Express 21(25):30664–30673CrossRefPubMedGoogle Scholar
  37. 37.
    Pirruccio G, Martín Moreno L, Lozano G, Gómez Rivas J (2013) Coherent and broadband enhanced optical absorption in graphene. ACS Nano 7(6):4810–4817CrossRefPubMedGoogle Scholar
  38. 38.
    Yan H, Low T, Zhu W, Wu Y, Freitag M, Li X, Guinea F, Avouris P, Xia F (2013) Damping pathways of mid-infrared plasmons in graphene nanostructures. Nat Photon 7(5):394–399CrossRefGoogle Scholar
  39. 39.
    García de Abajo FJ (2014) Graphene plasmonics: Challenges and opportunities. ACS Photon 1(3):135–152CrossRefGoogle Scholar
  40. 40.
    Low T, Avouris P (2014) Graphene Plasmonics for Terahertz to Mid-Infrared Applications. ACS Nano 8 (2):1086–1101CrossRefPubMedGoogle Scholar
  41. 41.
    Zhang Y, Feng Y, Zhu B, Zhao J, Jiang T (2014) Graphene based tunable metamaterial absorber and polarization modulation in terahertz frequency. Opt Express 22(19):22743– 22752CrossRefPubMedGoogle Scholar
  42. 42.
    Zhu J, Ma Z, Sun W, Ding F, He Q, Zhou L, Ma Y (2014) Ultra-broadband terahertz metamaterial absorber. Appl Phys Lett 105(2):021102CrossRefGoogle Scholar
  43. 43.
    Li X, Liu H, Sun Q, Huang N (2015) Ultra-broadband and polarization-insensitive wide-angle terahertz metamaterial absorber. Photon Nanostruct Fundam Appl 15:81–88CrossRefGoogle Scholar
  44. 44.
    Cheng Y, Gong R, Cheng Z (2016) A photoexcited broadband switchable metamaterial absorber with polarization-insensitive and wide-angle absorption for terahertz waves. Opt Commun 361:41–46CrossRefGoogle Scholar
  45. 45.
    Cheng Y, Gong R, Zhao J (2016) A photoexcited switchable perfect metamaterial absorber/reflector with polarization-independent and wide-angle for terahertz waves. Opt Mater 62:28–33CrossRefGoogle Scholar
  46. 46.
    Fan Y, Shen N-H, Zhang F, Wei Z, Li H, Zhao Q, Fu Q, Zhang P, Koschny T, Soukoulis CM (2016) Electrically tunable goos-hänchen effect with graphene in the terahertz regime. Adv Opt Mater 4 (11):1824–1828CrossRefGoogle Scholar
  47. 47.
    Liu J-T, Liu N-H, Li J, Li XJ, Huang J-H (2012) Enhanced absorption of graphene with one-dimensional photonic crystal. Appl Phys Lett 101(5):052104CrossRefGoogle Scholar
  48. 48.
    Furchi M, Urich A, Pospischil A, Lilley G, Unterrainer K, Detz H, Klang P, Andrews AM, Schrenk W, Strasser G, Mueller T (2012) Microcavity-Integrated Graphene Photodetector. Nano Lett 12 (6):2773–2777CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Wu PC, Papasimakis N, Tsai DP (2016) Self-Affine Graphene Metasurfaces for Tunable Broadband Absorption. Phys Rev Appl, (4):044019Google Scholar
  50. 50.
    Yablonovitch E (2001) Photonic crystals: semiconductors of light. Sci Am 285(6):47–51. 54CrossRefPubMedGoogle Scholar
  51. 51.
    Joannopoulos JD, Johnson SG, Winn JN, Meade RD (2008) Photonic crystals: Molding the flow of light. Princeton University Press, PrincetonGoogle Scholar
  52. 52.
    Hanson GW (2008) Dyadic Green’s functions and guided surface waves for a surface conductivity model of graphene. J Appl Phys 103(6):064302CrossRefGoogle Scholar
  53. 53.
    Kaipa CSR, Yakovlev AB, Hanson GW, Padooru YR, Medina F, Mesa F (2012) Enhanced transmission with a graphene-dielectric microstructure at low-terahertz frequencies. Phys Rev B 85(24):245407CrossRefGoogle Scholar
  54. 54.
    Zhang Z, Fan Y (2012) Propagation properties of a wave in a disordered multilayered system containing hyperbolic metamaterials. J Opt Soc Am B 29(11):2995–2999CrossRefGoogle Scholar
  55. 55.
    Fan Y, Wei Z, Li H, Chen H, Soukoulis CM (2013) Photonic band gap of a graphene-embedded quarter-wave stack. Phys Rev B 88(24):241403CrossRefGoogle Scholar
  56. 56.
    Yan H, Li X, Chandra B, Tulevski G, Wu Y, Freitag M, Zhu W, Avouris P, Xia F (2012) Tunable infrared plasmonic devices using graphene/insulator stacks. Nat Nanotechnol 7(5):330–334CrossRefPubMedGoogle Scholar
  57. 57.
    Chang Y-C, Liu C-H, Liu C-H, Zhang S, Marder SR, Narimanov EE, Zhong Z, Norris TB (2016) Realization of mid-infrared graphene hyperbolic metamaterials. Nat Commun 7:10568CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Key Laboratory of Space Applied Physics and Chemistry, Ministry of Education and Department of Applied Physics, School of ScienceNorthwestern Polytechnical UniversityXi’anChina
  2. 2.School of Materials Science and EngineeringChongqing Jiaotong UniversityChongqingChina
  3. 3.Key Laboratory of Advanced Micro-structure Materials (MOE) and Department of PhysicsTongji UniversityShanghaiChina
  4. 4.The Institute of Dongguan-Tongji UniversityDongguanChina
  5. 5.National Laboratory for Infrared PhysicsShanghai Institute of Technical Physics, Chinese Academy of ScienceShanghaiChina

Personalised recommendations