Advertisement

Plasmonics

, Volume 13, Issue 4, pp 1129–1134 | Cite as

A Universal Plasmonic Polarization State Analyzer

  • Qi Zhang
  • Peiyu Li
  • Yanying Li
  • Xiaorong Ren
  • Shuyun Teng
Article

Abstract

We propose a universal plasmonic polarization state analyzer consisting of rectangular holes arranged along an Archimedes spiral in silver film. The analyzer can detect different polarization states of light including linear, circular, radial and azimuthal polarizations. The theoretical analysis of its transmitted field is performed on the basis of the dipole radiations, and the analytic expressions of the electric field distributions under different polarized illuminations are provided. The numerical simulations of the near-field transmissions are also conducted to verify the analytic results. The significant differences between the field distributions predict the practicability of the universal plasmonic polarization state analyzer in determining the incident light polarization states.

Keywords

Polarization Surface plasmon polaritons Optical vortex Dipolar radiation 

Notes

Acknowledgments

The authors acknowledge the support of the Shandong Provincial Natural Science Foundation of China under Grant No. 2015ZRB01864.

References

  1. 1.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311(5758):189–193CrossRefPubMedGoogle Scholar
  2. 2.
    Dienerowitz M, Mazilu M, Reece PJ, Krauss TF, Dholakia K (2008) Optical vortex trap for resonant confinement of metal nanoparticles. Opt Express 16(7):4991–4999CrossRefPubMedGoogle Scholar
  3. 3.
    Schuller JA, Barnard ES, Cai W, Jun YC, White JS, Brongersma ML (2010) Plasmonics for extreme light concentration and manipulation. Nat Mater 9(3):193–204. doi: 10.1038/nmat2630 CrossRefPubMedGoogle Scholar
  4. 4.
    Lee J, Hua B, Park S, Ha M, Lee Y, Fan Z, Ko H (2014) Tailoring surface plasmons of high-density gold nanostar assemblies on metal films for surface-enhanced Raman spectroscopy. Nano 6(1):616–623. doi: 10.1039/c3nr 04752k CrossRefGoogle Scholar
  5. 5.
    Yuan W, Ho HP, Wu SY, Suen YK, Kong SK (2009) Polarization-sensitive surface plasmon enhanced ellipsometry biosensor using the photoelastic modulation technique. Sensor Actuat A-Phys 151(1):23–28. doi: 10.1016/j.sna.2009.01.025 CrossRefGoogle Scholar
  6. 6.
    Lin J, Mueller JPB, Wang Q, Yuan G, Antoniou N, Yuan XC, Capasso F (2013) Polarization-controlled tunable directional coupling of surface plasmon polaritons. Science 340(6130):331–334. doi: 10.1126/science.1233746 CrossRefPubMedGoogle Scholar
  7. 7.
    Yin L, Vlasko-Vlasov VK, Pearson J, Hiller JM, Hua J, Welp U, Brown DE, Kimball CW (2005) Subwavelength focusing and guiding of surface plasmons. Nano Lett 5(7):1399–1402CrossRefPubMedGoogle Scholar
  8. 8.
    Tsakmakidis KL, Boardman AD, Hess O (2007) ‘Trapped rainbow’ storage of light in metamaterials. Nature 450(7168):397–401. doi: 10.1038/nature06285 CrossRefPubMedGoogle Scholar
  9. 9.
    Park S, Hahn JW (2009) Plasmonic data storage medium with metallic nano-aperture array embedded in dielectric material. Opt Express 17(22):20203–20210CrossRefPubMedGoogle Scholar
  10. 10.
    Pan L, Park Y, Xiong Y, Ulin-Avila E, Wang Y, Zeng L, Xiong S, Rho J, Sun C, Bogy DB (2011) Maskless plasmonic lithography at 22 nm resolution. Sci Report 1:175CrossRefGoogle Scholar
  11. 11.
    Smolyaninov II, Hung YJ, Davis CC (2006) Super-resolution optics using short-wavelength surface plasmon polaritons. J Mod Opt 53(16–17):2337–2347. doi: 10.1080/09500340600893784 CrossRefGoogle Scholar
  12. 12.
    Casse BDF, Lu WT, Huang YJ, Gultep E, Menon L, Sridhar S (2010) Super-resolution imaging using a three-dimensional metamaterials nanolens. App Phys Lett 96(2):023114. doi: 10.1063/1.3291677 CrossRefGoogle Scholar
  13. 13.
    Wang C, Gan D, Zhao Y, Du C, Luo X (2008) Demagnifing super resolution imaging based on surface plasmon structures. Opt Express 16(8):5427–5434CrossRefPubMedGoogle Scholar
  14. 14.
    Yang S, Chen W, Nelson RL, Zhan Q (2009) Miniature circular polarization analyzer with spiral plasmonic lens. Opt Lett 34(20):3047–3049CrossRefPubMedGoogle Scholar
  15. 15.
    Chen W, Nelson RL, Zhan Q (2012) Efficient miniature circular polarization analyzer design using hybrid spiral plasmonic lens. Opt Lett 37(9):1442–1444CrossRefPubMedGoogle Scholar
  16. 16.
    Chen W, Rui G, Abeysinghe DC, Nelson RL, Zhan Q (2012) Hybrid spiral plasmonic lens: towards an efficient miniature circular polarization analyzer. Opt Express 20(24):26299–26307CrossRefPubMedGoogle Scholar
  17. 17.
    Li J, Tang P, Liu W, Huang T, Wang J, Wang Y, Zhu X (2015) Plasmonic circular polarization analyzer formed by unidirectionally controlling surface plasmon propagation. Appl Phys Lett 106(16):161106. doi: 10.1063/1.4919063 CrossRefGoogle Scholar
  18. 18.
    Zhang J, Guo Z, Li R, Wang W, Zhang A, Liu J, Qu J, Gao J (2015) Circular polarization analyzer based on the combined coaxial Archimedes’ spiral structure. Plasmonics 10(6):1255–1261. doi: 10.1007/s11468-015-9917-2 CrossRefGoogle Scholar
  19. 19.
    Afshinmanesh F, White JS, Cai W, Brongersma ML (2012) Measurement of the polarization state of light using an integrated plasmonic polarimeter. P Soc Photo-Opt Ins 1(2):125–129. doi: 10.1515/nanoph-2012-0004 CrossRefGoogle Scholar
  20. 20.
    Xie YB, Liu ZY, Wang QJ, Zhu YY, Zhang XJ (2014) Miniature polarization analyzer based on surface plasmon polaritons. Appl Phys Lett 105(10):101107. doi: 10.1063/1.4895517 CrossRefGoogle Scholar
  21. 21.
    Kim H, Park J, Cho SW, Lee SY, Kang M, Lee B (2010) Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens. Nano Lett 10(2):529–536. doi: 10.1021/nl903380j CrossRefPubMedGoogle Scholar
  22. 22.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science & Business Media, New YorkCrossRefGoogle Scholar
  23. 23.
    Zhu J, Cai X, Chen Y, Yu S (2013) Theoretical model for angular grating-based integrated optical vortex beam emitters. Opt Lett 38(8):1343–1345. doi: 10.1364/OL. 38.001343 CrossRefPubMedGoogle Scholar
  24. 24.
    Lee SY, Kim K, Kim SJ, Park H, Kim KY, Lee B (2015) Plasmonic meta-slit: shaping and controlling near-field focus. Optica 2(1):6–13. doi: 10.1364/optica. 2.000006.s001 CrossRefGoogle Scholar
  25. 25.
    Palik ED (1998) Handbook of optical constants of solids. Academic press, New YorkGoogle Scholar
  26. 26.
    Tsai WY, Huang JS, Huang CB (2013) Selective trapping or rotation of isotropic dielectric microparticles by optical near field in a plasmonic Archimedes spiral. Nano Lett 14(2):547–552. doi: 10.1021/nl403608a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Qi Zhang
    • 1
  • Peiyu Li
    • 1
  • Yanying Li
    • 1
  • Xiaorong Ren
    • 2
  • Shuyun Teng
    • 1
  1. 1.The College of Physics and Electronics, Shandong Provincial Key Laboratory of Optics and Photonic DeviceShandong Normal UniversityJinanChina
  2. 2.The Experiment Management CenterQilu University of TechnologyJinanChina

Personalised recommendations