Plasmonics

, Volume 13, Issue 2, pp 687–695 | Cite as

Dark Plasmon of Adjacent Silver Hexagonal Nanoplates Dimer

Article
  • 120 Downloads

Abstract

Silver hexagonal nanoplates (HNPs) were fabricated by solution phase method. It is observed that most of hexagonal nanoplates prefer that they be placed adjacent to each other, when they are deposited on glass substrate. Hence, the near-field enhancement in silver hexagonal nanoplate dimer is studied in detail using the discreet dipole approximation method. The effect of interparticle separation (dimer gap) and surrounding medium on the distribution pattern and magnitude of the near-field enhancement is analyzed. Our results show that there are three plasmonic bands for dimer separation 2 and 4 nm. The obtained results show that the highest value of the figure of merit (Fom) is about 15 which is related to third band of dimer with gaps 4 nm. Moreover, this mode shows extreme sensitivity to the interparticle gap distance and surrounding refractive index, which shows great promise for high sensitivity localized surface plasmon resonance (LSPR) sensing.

Keywords

Hexagonal nanoplates Silver dimers SPR Near field Dark mode 

Notes

Acknowledgements

The support of this work by the University of Qom and the Hi-Tech Center is gratefully acknowledged.

References

  1. 1.
    Agrawal A, Kriegel I, Milliron DJ (2015) J Phys Chem C 119:6227–6238CrossRefGoogle Scholar
  2. 2.
    Kelly KL, Coronado E, Zhao LL, Shatz GC (2003) J Phys Chem B 107:668–677CrossRefGoogle Scholar
  3. 3.
    Willets KA, Van Duyne RP (2007) Annu Rev Phys Chem 58:267CrossRefGoogle Scholar
  4. 4.
    Choi MR, Stanton-Maxey KJ, Stanley JK, Levin CS et al (2007) Nano Lett 7:3759CrossRefGoogle Scholar
  5. 5.
    Barnes WL, Dereux A, Ebbesen TW (2003) Nature 424:824CrossRefGoogle Scholar
  6. 6.
    Azarian A, Babaei F (2016) J Appl Phys 119:203103CrossRefGoogle Scholar
  7. 7.
    Ye J, Chen C, Van Roy W, Van Dorpe P (2008) Nanotechnology 19:325702CrossRefGoogle Scholar
  8. 8.
    Charles DE, Aherne D, Gara M, Ledwith DM et al (2009) ACS Nano 4:55–64CrossRefGoogle Scholar
  9. 9.
    Zhu W, Esteban R, Borisov AG, Baumberg JJ et al. (2016) Nat Commun 11495 doi: 10.1038Google Scholar
  10. 10.
    An J, Tang B, Ning X, Zhou J et al (2007) J Phys Chem C 111:18055–18059CrossRefGoogle Scholar
  11. 11.
    Amendola V, Bakr OM, Stellacci F (2010) Plasmonics 5:85–97CrossRefGoogle Scholar
  12. 12.
    Draine BT, Flatau PJ (1994) J Opt Soc Am A 11:1491–1499CrossRefGoogle Scholar
  13. 13.
    Goodman JJ, Draine BT, Flatau PJ (1991) Op Lett 16:1198–1200CrossRefGoogle Scholar
  14. 14.
    Draine BT, Goodman JJ (1993) Astrophys J 405:685–697CrossRefGoogle Scholar
  15. 15.
    Draine BT, Flatau PJ (2012) User guide for the discrete dipole approximation code DDSCAT 7.2 http://arxiv.org/abs/1202.3424
  16. 16.
    Guerrero-Martínez A, Alonso-Gómez JL, Auguié B, Cid MM, Liz-Marzán LM (2011) Nano Today 6:381–400CrossRefGoogle Scholar
  17. 17.
    Palik ED (1985) Handbook of optical constants of solids. Academic Press, New YorkGoogle Scholar
  18. 18.
    Francs GC, Derom S, Vincent R, Bouhelier A, Dereux A (2012) Int J Opt. Article ID 175162, 8 pages doi: 10.1155/2012/175162
  19. 19.
    Evlyukhin AB, Fischer T, Reinhardt C, Chichkov BN (2016) Phys Rev B 94:205434CrossRefGoogle Scholar
  20. 20.
    Yi Z, Niu G, Chen J, Luo J et al (2016) Plasmonics 11:37–44CrossRefGoogle Scholar
  21. 21.
    Albella P, Shibanuma T, Maier SA (2015) Scientific Repo Rts 5:18322CrossRefGoogle Scholar
  22. 22.
    Poutrina E, Urbas A (2014) J Opt 16:114005CrossRefGoogle Scholar
  23. 23.
    Mayer KM, Hafner JH (2011) Chem Rev 111:3828–3857CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsThe University of QomQomIran

Personalised recommendations