, Volume 13, Issue 2, pp 639–644 | Cite as

Surface Plasmon Polaritons Probed with Cold Atoms

  • Tomasz Kawalec
  • Aleksandra Sierant
  • Roman Panaś
  • Jacek Fiutowski
  • Dobrosława Bartoszek-Bober
  • Leszek Józefowski
  • Horst-Günter Rubahn


We report on an optical mirror for cold rubidium atoms based on a repulsive dipole potential created by means of a modified recordable digital versatile disc. Using the mirror, we have determined the absolute value of the surface plasmon polariton (SPP) intensity, reaching 90 times the intensity of the excitation laser beam. Furthermore, we have also directly measured thermo-plasmonic effects accompanying SPPs excitation on gold submicron structures.


Surface plasmon polaritons Diffraction gratings Laser cooling Microstructure fabrication 



Part of the equipment was purchased thanks to the financial support of the European Regional Development Fund in the framework of the Polish Innovation Economy Operational Program (POIG.02.02.00-00-003/08) and Ministry of Science and Higher Education (7150/E-338/M/2016). We are grateful to Bartosz Such and Marta Targosz-Korecka for the help with the AFM microsope and Agnieszka Szybowska and Marek Gołąb for lending us the infrared camera.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.


  1. 1.
    H. Raether (1988) Surface plasmons on smooth and rough surfaces and on gratings. In: G. Höhler (ed) Springer Tracts in Modern Physics. Springer-Verlag vol. 111Google Scholar
  2. 2.
    Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45:113001. doi: 10.1088/0022-3727/45/11/113001 CrossRefGoogle Scholar
  3. 3.
    Stehle C, Bender H, Zimmermann C, Kern D, Fleischer M, Slama S (2011) Plasmonically tailored micropotentials for ultracold atoms. Nat Photonics 5:494–498. doi: 10.1038/nphoton.2011.159 CrossRefGoogle Scholar
  4. 4.
    Stehle C, Zimmermann C, Slama S (2014) Cooperative coupling of ultracold atoms and surface plasmons. Nat Phys 10:937–942. doi: 10.1038/nphys3129 CrossRefGoogle Scholar
  5. 5.
    Tame MS, McEnery KR, Özdemir SK, Lee J, Maier SA, Kim MS (2013) Quantum plasmonics. Nat Phys 9:329–340. doi: 10.1038/nphys2615 CrossRefGoogle Scholar
  6. 6.
    Kretschmann E (1971) The determination of the optical constants of metals by excitation of surface plasmons. Z Phys 241:313–324CrossRefGoogle Scholar
  7. 7.
    Wood RW (1935) Anomalous diffraction gratings. Phys Rev 48:928–937. doi: 10.1103/PhysRev.48.928 CrossRefGoogle Scholar
  8. 8.
    Kaplan B, Guner H, Senlik O, Gurel K, Bayindir M, Dana A (2009) Tuning optical discs for plasmonic applications. Plasmonics 4:237–243. doi: 10.1007/s11468-009-9099-x CrossRefGoogle Scholar
  9. 9.
    Bartoszek D, Fiutowski J, Dohnalik T, Kawalec T (2010) Optical surface devices for atomic and atom physics. Opt Appl 40:535–546Google Scholar
  10. 10.
    Metcalf HJ, van der Straten P (2003) Laser cooling and trapping of atoms. J Optical Soc Am B 20:887–908. doi: 10.1364/JOSAB:20.000887 CrossRefGoogle Scholar
  11. 11.
    Kawalec T, Bartoszek-Bober D, Panaś R, Fiutowski J, Pławecka A, Rubahn H-G (2014) Optical dipole mirror for cold atoms based on a metallic diffraction grating. Opt Lett 39:2932–2935. doi: 10.1364/OL.39.002932 CrossRefGoogle Scholar
  12. 12.
    Roach TM, Abele H, Boshier MG, Grossman HL, Zetie KP, Hinds EA (1995) Realization of a magnetic mirror for cold atoms. Phys Rev Lett 75:629–632. doi: 10.1103/PhysRevLett.75.629 CrossRefGoogle Scholar
  13. 13.
    Hughes IG, Barton PA, Roach TM, Boshier MG, Hinds EA (1997) Atom optics with magnetic surfaces: I. storage of cold atoms in a curved ‘floppy disk’. J Phys B Atomic Mol Phys 30:647–658CrossRefGoogle Scholar
  14. 14.
    Saba CV, Barton PA, Boshier MG, Hughes IG, Rosenbusch P, Sauer BE, Hinds EA (1999) Reconstruction of a cold atom cloud by magnetic focusing. Phys Rev Lett 82:468–471. doi: 10.1103/PhysRevLett.82.468 CrossRefGoogle Scholar
  15. 15.
    P. Kwiecien (2011) “rcwa-1d”. Accessed 7 November 2016
  16. 16.
    Moharam MG, Grann EB, Pommet DA, Gaylord TK (1995) Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings. J Opt Soc Am A 12:1068–1076. doi: 10.1364/JOSAA.12.001068 CrossRefGoogle Scholar
  17. 17.
    Kawalec T, Bartoszek-Bober D (2012) Two laser interference visible to the naked eye. Eur J Phys 33:85–90. doi: 10.1088/0143-0807/33/1/007 CrossRefGoogle Scholar
  18. 18.
    Arora B, Sahoo BK (2014) Van der Waals coefficients for alkali-metal atoms in material media. Phys Rev A 89:022511. doi: 10.1103/PhysRevA.89.022511 CrossRefGoogle Scholar
  19. 19.
    Koev ST, Agrawal A, Lezec HJ, Aksyukl VA (2012) An efficient large-area grating coupler for surface plasmon polaritons. Plasmonics 7:269–277. doi: 10.1007/s11468-011-9303-7 CrossRefGoogle Scholar
  20. 20.
    Dou X, Chung P-Y, Jiang P, Dai J (2012) Surface plasmon resonance-enabled antibacterial digital versatile discs. Appl Phys Lett 100:063702. doi: 10.1063/1.3685460 CrossRefGoogle Scholar
  21. 21.
    Landragin A, Courtois J-Y, Labeyrie G, Vansteenkiste N, Westbrook CI, Aspect A (1996) Measurement of the van der Waals force in an atomic mirror. Phys Rev Lett 77:1464–1467. doi: 10.1103/PhysRevLett.77.1464 CrossRefGoogle Scholar
  22. 22.
    Stehle C, Bender H, Jessen F, Zimmermann C, Slama S (2010) Ad- and desorption of Rb atoms on a gold nanofilm measured by surface plasmon polaritons. New J Phys 12:083066. doi: 10.1088/1367-2630/12/8/083066 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Marian Smoluchowski Institute of PhysicsJagiellonian University in KrakówKrakówPoland
  2. 2.Mads Clausen Institute, NanoSydUniversity of Southern DenmarkSønderborgDenmark

Personalised recommendations