Plasmonics

, Volume 13, Issue 2, pp 467–474 | Cite as

Facile Synthesis of Tunable Nanostructured Plasmonic Templates by Electroless Deposition

Article
  • 82 Downloads

Abstract

In this work, we have developed plasmonic Ag nanoparticles supported on Si substrates via a simple electroless deposition process eliminating the need of vacuum technology. The near- and far-field plasmonic performance of the produced nanoparticles were evaluated by surface-enhanced Raman scattering (using Rhodamine 6G as test molecule) and specular spectral reflectivity measurements, respectively. The factors influencing the development of nanoparticles, such as the type (p- or n-) and the orientation ({100} or {111}) of the substrate, the deposition time, and the solution’s concentration, were studied thoroughly by optical measurements, x-ray diffraction, auger electron spectroscopy, and x-ray photoelectron spectroscopy. The deposition time, as well as the concentration, affected significantly the development and the growth rate of the particles making this technique an easy and inexpensive method for the development of tunable plasmonic nanoparticles. The produced plasmonic templates had improved signal-to-noise ratio by an order of magnitude for R6G compared to sputter-deposited Ag nanoparticles.

Keywords

Electroless deposition Surface pasmon resonance Nanoparticles Surface-enhanced Raman scattering 

Notes

Acknowledgements

The authors acknowledge Prof. M. Karakassides and Dr. K. Vasilopoulos of the Laboratory of Ceramic and Composite Materials of the University of Ioannina for the Raman measurements.

References

  1. 1.
    Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Philos Trans R Soc London, Ser A203:385–420CrossRefGoogle Scholar
  2. 2.
    Mie G (1908) Beiträge zur optik trübe rmedien, speziell kolloidaler metallösungen. Ann der Physik 330:377–445CrossRefGoogle Scholar
  3. 3.
    Maier SA (2007) Plasmonics: fundamentals and applications. Springer Science and Business Media LLC, New York, pp 65–87Google Scholar
  4. 4.
    Brongersma ML, Shalaev VM (2010) The case for plasmonics. Science 328:440–441CrossRefGoogle Scholar
  5. 5.
    Halas NJ (2010) Plasmonics: an emerging field fostered by nano letters. Nano Lett 10:3816–3822CrossRefGoogle Scholar
  6. 6.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  7. 7.
    Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA (2011) Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem Rev 111:3736–3827CrossRefGoogle Scholar
  8. 8.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nature Mater 9:865CrossRefGoogle Scholar
  9. 9.
    Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16:133–146CrossRefGoogle Scholar
  10. 10.
    Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Panagiotopoulos NT, Gravalidis C, Kassavetis S, Patsalas P, Logothetidis S (2012) Plasmonic silver nanoparticles for improved organic solar cells. Solar Ener Mater Solar Cells 104:165–174CrossRefGoogle Scholar
  11. 11.
    Kalfagiannis N, Karagiannidis PG, Pitsalidis C, Hastas N, Panagiotopoulos NT, Patsalas P, Logothetidis S (2014) Performance of hybrid buffer poly(3,4-ethylenedioxythiophene) poly(styrenesulfonate) layers doped with plasmonic silver nanoparticles. Thin Solid Films 560:27–33CrossRefGoogle Scholar
  12. 12.
    Beliatis MJ, Henley SJ, Han S, Gandhi K, Adikaari AA, Stratakis E, Kymakis E, Silva SRP (2014) Organic solar cells with plasmonic layers formed by laser nanofabrication. Phys Chem Chem Phys 15:8237–8244CrossRefGoogle Scholar
  13. 13.
    Siozios A, Koutsogeorgis DC, Lidorikis E, Dimitrakopoulos GP, Kehagias T, Zoubos H, Komninou P, Cranton WM, Kosmidis C, Patsalas P (2012) Optical encoding by plasmon-based patterning: hard and inorganic materials become photosensitive. Nano Lett 12:259–263CrossRefGoogle Scholar
  14. 14.
    Van Duyne RP (2004) Molecular plasmonics. Science 306:985–986CrossRefGoogle Scholar
  15. 15.
    Harpster MH, Zhang H, Sankara-Warrier AK, Ray BH, Ward TR, Kollmar JP, Carron KT, Mecham JO, Corcoran RC, Wilson WC, Johnson PA (2009) SERS detection of indirect viral DNA capture using colloidal gold and methylene blue as a Raman label. Biosens Bioelectr 25:674–681CrossRefGoogle Scholar
  16. 16.
    McNay G, Eustace D, Smith WE, Faulds K, Graham D (2011) Surface-enhanced Raman scattering (SERS) and surface-enhanced resonance Raman scattering (SERRS): a review of applications. Appl Spectr 65:825–837CrossRefGoogle Scholar
  17. 17.
    Camden JP, Dieringer JA, Wang Y, Masiello DJ, Marks LD, Schatz GC, Van Duyne RP (2008) Probing the structure of single-molecule surface-enhanced Raman scattering hot spots. J Am Chem Soc 130:12616–12617CrossRefGoogle Scholar
  18. 18.
    Jackson JB, Halas NJ (2004) Surface-enhanced Raman scattering on tunable plasmonic nanoparticle substrates. Proc Nat Acad Sci USA 101:17930–17935CrossRefGoogle Scholar
  19. 19.
    Beliatis MJ, Henley SJ, Silva SRP (2011) Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors. Opt Lett 36:1362–1364CrossRefGoogle Scholar
  20. 20.
    D’Andrea C, Neri F, Ossi PM, Santo N, Trusso S (2009) The controlled pulsed laser deposition of Ag nanoparticle arrays for surface enhanced Raman scattering. Nanotechnology 20:2456061–2456065Google Scholar
  21. 21.
    Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS (1997) Single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 78:1667CrossRefGoogle Scholar
  22. 22.
    Le Ru EC, Meyer M, Etchegoin PG (2006) Proof of single-molecule sensitivity in surface enhanced Raman scattering (SERS) by means of a two-analyte technique. J Phys Chem B110:1944–1948CrossRefGoogle Scholar
  23. 23.
    Kassavetis S, Kaziannis S, Pliatsikas N, Avgeropoulos A, Karantzalis AE, Kosmidis C, Lidorikis E, Patsalas P (2015) Formation of plasmonic colloidal silver for flexible and printed electronics using laser ablation. Appl Surf Sci 336:262–266CrossRefGoogle Scholar
  24. 24.
    Brejna PR, Griffiths PR (2010) Electroless deposition of silver onto silicon as a method of preparation of reproducible surface-enhanced Raman spectroscopy substrates and tip-enhanced Raman spectroscopy tips. Appl Spectrosc 64:493–499CrossRefGoogle Scholar
  25. 25.
    Ye W, Chang Y, Ma C, Jia B, Cao G, Wang C (2007) Electrochemical investigation of the surface energy: effect of the HF concentration on electroless silver deposition onto p-Si{111}. Appl Surf Sci 253:3419–3424CrossRefGoogle Scholar
  26. 26.
    Ten Kortenaar MV, De Goeij JJM, Kolar ZI, Frens G, Lusse PJ, Zuiddam MR, Van Der Drift E (2001) Electroless silver deposition in 100 nm silicon structures. J Electrochem Soc 148:C28–C33CrossRefGoogle Scholar
  27. 27.
    Yae S, Nasua N, Matsumoto K, Hagihara T, Fukumuro N, Matsuda H (2007) Nucleation behavior in electroless displacement deposition of metals on silicon from hydrofluoric acid solutions. Electrochim Acta 53:35–41CrossRefGoogle Scholar
  28. 28.
    Ye W, Shen C, Tian J, WangC HC, Gao H (2009) Controllable growth of silver nanostructures by a simple replacement reaction and their SERS studies. Solid State Sci 11:1088–1093CrossRefGoogle Scholar
  29. 29.
    Galopin E, Barbillat J, Coffinier Y, Szunerits S, Patriarche G, Boukherroub R (2009) Silicon nanowires coated with silver nanostructures as ultrasensitive interfaces for surface-enhanced Raman spectroscopy. ACS Appl Mater Inter 7:1396–1403CrossRefGoogle Scholar
  30. 30.
    Sun X, Tao R, Lin L, Li Z, Zhang Z, Feng J (2011) Fabrication and characterization of polycrystalline silicon nanowires with silver-assistance by electroless deposition. Appl Surf Sci 257:3861–3866CrossRefGoogle Scholar
  31. 31.
    Ozdemir B, Kulakci M, Turan R, Unalan HE (2011) Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires. Nanotechnology 22:1556061–1556067CrossRefGoogle Scholar
  32. 32.
    Peng K, Lu A, Zhang R, Lee S-T (2008) Motility of metal nanoparticles in silicon and induced anisotropic silicon etching. Adv Funct Mater 18:3026–3035CrossRefGoogle Scholar
  33. 33.
    Paunovic M, Schlesinger M (2006) Fundamentals of electrochemical deposition. Wiley, HobokenCrossRefGoogle Scholar
  34. 34.
    Panagiotopoulos NT, Kalfagiannis N, Vasilopoulos KC, Pliatsikas N, Kassavetis S, Vourlias G, Karakassides MA, Patsalas P (2015) Self-assembled plasmonic templates produced by microwave annealing: applications to surface-enhanced Raman scattering. Nanotechnology 26:205603CrossRefGoogle Scholar
  35. 35.
    Pliatsikas N, Siozios A, Kassavetis S, Vourlias G, Patsalas P (2014) Optical properties of nanostructured Al-rich Al1−xTixN films. Surf Coat Technol 257:63–69CrossRefGoogle Scholar
  36. 36.
    Ferraria AM, Carapeto AP, do Rego Botelho AM (2012) X-ray photoelectron spectroscopy: silver salts revisited. Vacuum 86:1988–1991CrossRefGoogle Scholar
  37. 37.
    Matenoglou G, Evangelakis GA, Kosmidis C, Foulias S, Papadimitriou D, Patsalas P (2007) Pulsed laser deposition of amorphous carbon/silver nanocomposites. Appl Surf Sci 253:8155–8159CrossRefGoogle Scholar
  38. 38.
    Kalfagiannis N, Siozios A, Bellas DV, Toliopoulos D, Bowen L, Pliatsikas N, Cranton WM, Kosmidis C, Koutsogeorgis DC, Lidorikis E, Patsalas P (2016) Selective modification of nanoparticle arrays by laser-induced self assembly (MONA-LISA): putting control into bottom-up plasmonic nanostructuring. Nanoscale 8:8236–8244CrossRefGoogle Scholar
  39. 39.
    Chen W, Thoreson MD, Ishii S, Kildishev AV, Shalaev VM (2010) Ultra-thin ultra-smooth and low-loss silver films on a germanium wetting layer. Opt Expr 18:5124–5134CrossRefGoogle Scholar
  40. 40.
    Abouda-Lachiheb M, Nafie N, Bouaicha M (2012) The dual role of silver during silicon etching in HF solution. Nanoscale ResLett 7:455CrossRefGoogle Scholar
  41. 41.
    Li X, Bohn PW (2000) Metal-assisted chemical etching in HF/H2O2 produces porous silicon. Appl Phys Lett 77:2572–2574CrossRefGoogle Scholar
  42. 42.
    Patsalas P, Logothetidis S (2003) Interface properties and structural evolution of TiN/Si and TiN/GaN heterostructures. J Appl Phys 100:989–998CrossRefGoogle Scholar
  43. 43.
    Sugihara S, Okazaki K, Suganuma K (1993) Wetting of silicon single crystal by silver and tin, and their interfaces. J Mater Sci 28:2455–2458CrossRefGoogle Scholar
  44. 44.
    Little SA, Begou T, Collins RW, Marsillac S (2012) Optical detection of melting point depression for silver nanoparticles via in situ real time spectroscopic ellipsometry. Appl Phys Lett 100:051107CrossRefGoogle Scholar
  45. 45.
    Asoro MA, Damiano J, Ferreira PJ (2009) Size effects on the melting temperature of silver nanoparticles: in situ TEM observations. Microsc Microanal 15:706–707CrossRefGoogle Scholar
  46. 46.
    Chernyshev AP (2009) Effect of nanoparticle size on the onset temperature of surface melting. Mater Lett 63:1525–1527CrossRefGoogle Scholar
  47. 47.
    Siozios Α, Koutsogeorgis DC, Lidorikis E, Dimitrakopulos GP, Pliatsikas N, Vourlias G, Kehagias T, Komninou P, Cranton W, Kosmidis C, Patsalas P (2015) Laser-matter interactions, phase changes and diffusion phenomena during laser annealing of plasmonic AlN:Ag templates and their applications in optical encoding. J Phys D Appl Phys 48:285306CrossRefGoogle Scholar
  48. 48.
    Beszeda A, Gontier-Moya EG, Imre AW (2005) Surface ostwald-ripening and evaporation of gold beaded films on sapphire. Appl Phys A Mater Sci Process 81:673–677CrossRefGoogle Scholar
  49. 49.
    Waterhouse GIN, Bowmaker GA, Metson JB (2001) The thermal decomposition of silver (I, III) oxide: a combined XRD, FTIR and Raman spectroscopic study. Phys Chem Chem Phys 3:3838–3845CrossRefGoogle Scholar
  50. 50.
    Hildebrandt P, Stockburger M (1984) Surface-enhanced resonance Raman spectroscopy of rhodamine 6G adsorbed on colloidal silver. J Phys Chem 88:5935CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of PhysicsAristotle University of ThessalonikiThessalonikiGreece

Personalised recommendations