Plasmonics

pp 1–9 | Cite as

Optical Manipulation of Dielectric Nanoparticles with Au Micro-racetrack Resonator by Constructive Interference of Surface Plasmon Waves

  • Mingrui Yuan
  • Lin Cheng
  • Pengfei Cao
  • Xu Li
  • Xiaodong He
  • Xiaoping Zhang
Article

Abstract

We design a gold micro-racetrack resonator (Au-MRR) which can tightly trap and drive the dielectric nanoparticle to rotate around the circuit of racetrack with an adjustable velocity. Since the surface plasmon waves can be excited and obey the resonance condition of the Au-MRR, the optics force can be strengthened observably due to the resonance. The optical forces applied on dielectric nanoparticle are discussed by utilizing the Maxwell’s stress tensor integration with a numerical finite element method. The depth of longitudinal trapping potential well in the Au-MRR is four times as large as that of a straight waveguide. At the same level of input power, the velocity of particle with radius of 50 nm driven by optical forces on Au-MRR is 200 times larger than that on a straight waveguide. Further, we explore the motion behavior of single nanoparticle lies on different position of Au-MRR, which can provide the details to trap and manipulate multiple nanoparticles and predict their trace of movement. This optimum geometry of Au-MRR allows further enhancement of the optical forces which is expected to realize all-optical on-chip manipulation of nanoparticles, biomolecules, and many other nanomanipulation applications.

Keywords

Optical manipulation Surface plasmon waves Micro-racetrack resonator Motion behavior 

References

  1. 1.
    Grier DG (2003) A revolution in optical manipulation. Nature 424(6950):810–816CrossRefGoogle Scholar
  2. 2.
    Ashkin A (1997) Inaugural article: optical trapping and manipulation of neutral particles usinglasers. Proc Natl Acad Sci U S A 10:4853–4860CrossRefGoogle Scholar
  3. 3.
    Biancaniello PL, Crocker JC (2006) Line optical tweezers instrument for measuring nanoscale interactions and kinetics. Rev Sci Instrum 77(11):113702–113710CrossRefGoogle Scholar
  4. 4.
    Curtis JE, Grier DG (2003) Structure of optical vortices. Phys Rev Lett 90(13):133901CrossRefGoogle Scholar
  5. 5.
    Garcés-Chávez V, Mcgloin D, Padgett MJ, Dultz W, Schmitzer H, Dholakia K (2003) Observation of the transfer of the local angular momentum density of a multiringed light beam to an optically trapped particle. Phys Rev Lett 91(9):9105–9117CrossRefGoogle Scholar
  6. 6.
    Macdonald MP, Spalding GC, Dholakia K (2003) Microfluidic sorting in an optical lattice. Nature 426(6965):421–424CrossRefGoogle Scholar
  7. 7.
    Schonbrun E, Piestun R, Jordan P, Cooper J, Wulff K, Courtial J, Padgett M (2005) 3D interferometric optical tweezers using a single spatial light modulator. Opt Express 13(10):3777–3786CrossRefGoogle Scholar
  8. 8.
    Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2(6):365–370CrossRefGoogle Scholar
  9. 9.
    Tani SKT (1996) Optically driven Mie particles in an evanescent field along a channeled waveguide. Opt Lett 21(21):1768–1770CrossRefGoogle Scholar
  10. 10.
    Yang AHJ, Moore SD, Schmidt BS, Klug M, Lipson M, Erickson D (2009) Optical manipulation of nanoparticles and biomolecules in sub-wavelength slot waveguides. Nature 457(457):71–75CrossRefGoogle Scholar
  11. 11.
    Gaugiran S, Gétin S, Fedeli J, Colas G, Fuchs A, Chatelain F, Dérouard J (2005) Optical manipulation of microparticles and cells on silicon nitride waveguides. Opt Express 13(18):6956–6963CrossRefGoogle Scholar
  12. 12.
    Schmidt BS, Yang AH, Erickson D, Lipson M (2007) Optofluidic trapping and transport on solid core waveguides within a microfluidic device. Opt Express 15(15):14322–14334CrossRefGoogle Scholar
  13. 13.
    Wang K, Schonbrun E, Crozier KB (2009) Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. Nano Lett 9(7):2623–2629CrossRefGoogle Scholar
  14. 14.
    Righini M, Zelenina A, Quidant R (2007) Parallel and selective trapping in a patterned plasmonic landscape. In: IEEE/LEOS International Conference on Optical MEMs and Nanophotonics. pp 477–480Google Scholar
  15. 15.
    Lin S, Hu J, Kimerling L, Crozier K (2009) Design of nanoslotted photonic crystal waveguide cavities for single nanoparticle trapping and detection. Opt Lett 34(21):3451–3453CrossRefGoogle Scholar
  16. 16.
    Sudeep M, Xavier S, David E (2010) Nanomanipulation using silicon photonic crystal resonators. Nano Lett 10(1):99–104CrossRefGoogle Scholar
  17. 17.
    Arnold S, Keng D, Shopova SI, Holler S, Zurawsky W, Vollmer F (2009) Whispering gallery mode carousel—a photonic mechanism for enhanced nanoparticle detection in biosensing. Opt Express 17(8):6230–6238CrossRefGoogle Scholar
  18. 18.
    Lin S, Schonbrun E, Crozier K (2010) Optical manipulation with planar silicon microring resonators. Nano Lett 10(7):2408–2411CrossRefGoogle Scholar
  19. 19.
    Vollmer F, Arnold S (2008) Whispering-gallery-mode biosensing: label-free detection down to single molecules. Nat Methods 5(7):591–596CrossRefGoogle Scholar
  20. 20.
    Zhu J, Ozdemir SK, Xiao YF, Li L, He L, Chen DR, Yang L (2009) On-chip single nanoparticle detection and sizing by mode splitting in an ultrahigh-Q microresonator. Nat Photonics 4(2):122CrossRefGoogle Scholar
  21. 21.
    Bohren CF (1983) Absorption and scattering of light by small particles / Craig F. Bohren, Donald R. HuffmanGoogle Scholar
  22. 22.
    Griffiths DJ (2005) Introduction to Electrodynamics. American Journal of Physics 73 (6):574-574. doi:10.1119/1.4766311
  23. 23.
    Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79(4):645–648CrossRefGoogle Scholar
  24. 24.
    Yang AHJ, Lerdsuchatawanich T, Erickson D (2009) Forces and transport velocities for a particle in a slot waveguide. Nano Lett 9(9):1182–1188CrossRefGoogle Scholar
  25. 25.
    Ashkin A, Dziedzic JM, Bjorkholm JE, Chu S (1986) Observation of a single-beam gradient force optical trap for dielectric particles. Opt Lett 11(5):288–290CrossRefGoogle Scholar
  26. 26.
    Hiemenz PC (1986) Principles of colloid and surface chemistry, vol 188. M. Dekker New YorkGoogle Scholar
  27. 27.
    Pailthorpe BA, Russel WB (1982) The retarded van der Waals interaction between spheres. J Colloid Interface Sci 89(2):563–566CrossRefGoogle Scholar
  28. 28.
    Belloni L (1986) Electrostatic interactions in colloidal solutions: comparison between primitive and one-component models. J Chem Phys 85(1):519–526CrossRefGoogle Scholar
  29. 29.
    Harada Y, Asakura T (1996) Radiation forces on a dielectric sphere in the Rayleigh scattering regime. Opt Commun 124(5):529–541CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mingrui Yuan
    • 1
  • Lin Cheng
    • 1
  • Pengfei Cao
    • 1
  • Xu Li
    • 1
  • Xiaodong He
    • 1
  • Xiaoping Zhang
    • 1
  1. 1.School of Information Science and EngineeringLanzhou UniversityLanzhouChina

Personalised recommendations