pp 1–8 | Cite as

Direct Observation of Surface Plasmon Polariton Propagation and Interference by Time-Resolved Imaging in Normal-Incidence Two Photon Photoemission Microscopy

  • Philip Kahl
  • Daniel Podbiel
  • Christian Schneider
  • Andreas Makris
  • Simon Sindermann
  • Christian Witt
  • Deirdre Kilbane
  • Michael Horn-von Hoegen
  • Martin Aeschlimann
  • Frank Meyer zu Heringdorf


Time-resolved imaging of the propagation and interference of isolated ultrashort surface plasmon polariton wave packets is demonstrated using two photon photoemission microscopy. The group- and phase velocity of individual wave packets are determined experimentally. Using two counter-propagating surface plasmon polariton pulses, the transient formation of a standing surface plasmon polariton wave is imaged in time and space. We demonstrate that using a normal incidence geometry in time-resolved photoemission microscopy provides great advantages for in-situ imaging of surface plasmon polaritons in arbitrary plasmonic structures. A simple 1D wave-simulation is used to confirm the experimental results.


Surface plasmon polariton Two photon photoemission microcopy Time-resolved imaging Normal-incidence geometry 


  1. 1.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311 (5758):189–193CrossRefGoogle Scholar
  2. 2.
    Atwater HA (2007) The Promise of Plasmonics. Sci Am 296:56–62CrossRefGoogle Scholar
  3. 3.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  4. 4.
    Specht M, Pedarnig JD, Heckl WM, Hansch TW (1992) Scanning Plasmon near-Field Microscope. Phys Rev Lett 68:476–479CrossRefGoogle Scholar
  5. 5.
    Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg F, Leitner A, Krenn J (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B-Adv 149:220–229CrossRefGoogle Scholar
  6. 6.
    Sandtke M, Engelen R, Schoenmaker H, Attema I, Dekker H, Cerjak I, Korterik J, Segerink F, Kuipers L (2008) Novel instrument for surface plasmon polariton tracking in space and time. Rev Sci Instrum 79:013704CrossRefGoogle Scholar
  7. 7.
    Gorodetski Y, Chervy T, Wang S, Hutchinson J, Drezet A, Genet C, Ebbesen TW (2016) Tracking surface plasmon pulses using ultrafast leakage imaging. Optica 3(1):48–53CrossRefGoogle Scholar
  8. 8.
    Schmidt O, Bauer M, Wiemann C, Porath R, Scharte M, Andreyev O, Schönhense G, Aeschlimann M (2002) Time-Resolved Two Photon Photoemission Electron Microscopy. Appl Phys B 74:223–227CrossRefGoogle Scholar
  9. 9.
    Cinchetti M, Gloskovskii A, Nepjiko S A, Schönhense G, Rochholz H, Kreiter M (2005) Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields. Phys Rev Lett 95:047601CrossRefGoogle Scholar
  10. 10.
    Chelaru L I, Horn-von Hoegen M, Thien D, Meyer zu Heringdorf FJ (2006) Fringe fields in nonlinear photoemission microscopy. Phys. Rev. B 73:115416CrossRefGoogle Scholar
  11. 11.
    Kubo A, Pontius N, Petek H (2007) Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface. Nano Lett 7:470CrossRefGoogle Scholar
  12. 12.
    Chelaru L, Meyer zu Heringdorf F J (2007) In situ Monitoring of Surface Plasmons in Single-Crystalline Ag Nanowires. Surf. Sci. 601:4541CrossRefGoogle Scholar
  13. 13.
    Buckanie N, Kirschbaum P, Sindermann S, zu Heringdorf MF-J (2013) Interaction of Light and Surface Plasmon Polaritons in Ag Islands Studied by Nonlinear Photoemission Microscopy. Ultramicroscopy 130:49–53CrossRefGoogle Scholar
  14. 14.
    Creath K, Wyant J (1992) Moiré and Fringe Projection Techniques in Optical Shop Testing. Wiley Chichester, United KingdomGoogle Scholar
  15. 15.
    Meyer zu Heringdorf F J, Chelaru L, Möllenbeck S, Thien D, Horn von Hoegen M (2007) Femtosecond Photoemission Electron Microscopy. Surf Sci 601:4700–4705CrossRefGoogle Scholar
  16. 16.
    Lemke C, Schneider C, Leiner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M (2013) Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices. Nano Lett 13:1053–1058CrossRefGoogle Scholar
  17. 17.
    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P (2015) Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface. Nano Lett 15:3472–3478CrossRefGoogle Scholar
  18. 18.
    Lemke C, Leißner T, Jauernik S, Klick A, Fiutowski J, Kjelstrup-Hansen J, Rubahn HG, Bauer M (2012) Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses. Optics Express 20:12877–12884CrossRefGoogle Scholar
  19. 19.
    Lemke C, Leißner T., Evlyukhin A, Radke JW, Klick A, Fiutowski J., Kjelstrup-Hansen J, Rubahn HG, Chichkov BN, Reinhardt C, Bauer M (2014) The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time. Nano Lett 14:2431–2435CrossRefGoogle Scholar
  20. 20.
    Kahl P, Wall S, Witt C, Schneider C, Bayer D, Fischer A, Melchior P, Horn-von Hoegen M, Aeschlimann F J (2014) Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for Imaging Surface Plasmon Polaritons. Plasmonics 9:1401–1407CrossRefGoogle Scholar
  21. 21.
    Meyer zu Heringdorf F J, Kahl P, Makris A, Sindermann S, Podbiel D, Horn-von Hoegen M (2015) Signatures of Plasmoemission in Two Photon Photoemission Electron Microscopy. Proc SPIE 9361:93610WCrossRefGoogle Scholar
  22. 22.
    Wehner M U, Ulm M, Wegener M (1997) Scanning Interferometer Stabilized by use of Pancharatnam’s Phase. Opt Lett 22:1455–1457CrossRefGoogle Scholar
  23. 23.
    Podbiel D, Kahl P, Meyer zu Heringdorf F J (2016) Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump-probe experiment with adjustable polarization. Appl Phys B 122:90CrossRefGoogle Scholar
  24. 24.
    Johnson P B, Christy R W (1972) Optical Constants of the Noble Metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  25. 25.
    Olmon R, Slovick B, Johnson T, Shelton D, Oh S H, Boreman GRMB (2012) Optical dielectric function of gold. Phys Rev B 86:235147CrossRefGoogle Scholar
  26. 26.
    Maier SA (2007) Plasmonics, SpringerGoogle Scholar
  27. 27.
    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87CrossRefGoogle Scholar
  28. 28.
    Zhang L, Kubo A, Wang L, Petek H, Seideman T (2013) Universal aspects of ultrafast optical pulse scattering by a nanoscale asperity. J Phys Chem C 117:18648–18652CrossRefGoogle Scholar
  29. 29.
    Kaiser T, Falkner M, Qi J, Klein A, Steinert M, Menzel C, Rockstuhl C, Pertsch T Characterization of a Circular Optical Nanoantenna by Nonlinear Photoemission Electron MicroscopyGoogle Scholar
  30. 30.
    Radha B, Arif M, Datta R, Kundu T K, Kulkarni G U (2010) Movable Au Microplates as Fluorescence Enhancing Substrates for Live Cells. Nano Res 3:738– 747CrossRefGoogle Scholar
  31. 31.
    Schmidt T, Heun S, Slezak J, Diaz K, Prince J, Lilienkamp G, Bauer E (1998) SPELEEM: Combining LEEM and Spectroscopic Imaging. Surf Rev Lett 5(6):1287CrossRefGoogle Scholar
  32. 32.
    Xu L, Tempea G, Poppe A, Lenzner M, Spielmann C, Krausz F, Stingl A, Ferencz K (1997) High-power sub-10-fs Ti:sapphire oscillators. Appl Phys B 65:151–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Philip Kahl
    • 1
  • Daniel Podbiel
    • 1
  • Christian Schneider
    • 2
  • Andreas Makris
    • 1
  • Simon Sindermann
    • 1
    • 3
  • Christian Witt
    • 1
  • Deirdre Kilbane
    • 2
  • Michael Horn-von Hoegen
    • 1
  • Martin Aeschlimann
    • 2
  • Frank Meyer zu Heringdorf
    • 1
  1. 1.Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Department of Physics and Research Center OPTIMASUniversity of KaiserslauternKaiserslauternGermany
  3. 3.Infineon Technologies AGWarsteinGermany

Personalised recommendations