, Volume 13, Issue 1, pp 239–246 | Cite as

Direct Observation of Surface Plasmon Polariton Propagation and Interference by Time-Resolved Imaging in Normal-Incidence Two Photon Photoemission Microscopy

  • Philip Kahl
  • Daniel Podbiel
  • Christian Schneider
  • Andreas Makris
  • Simon Sindermann
  • Christian Witt
  • Deirdre Kilbane
  • Michael Horn-von Hoegen
  • Martin Aeschlimann
  • Frank Meyer zu Heringdorf


Time-resolved imaging of the propagation and interference of isolated ultrashort surface plasmon polariton wave packets is demonstrated using two photon photoemission microscopy. The group- and phase velocity of individual wave packets are determined experimentally. Using two counter-propagating surface plasmon polariton pulses, the transient formation of a standing surface plasmon polariton wave is imaged in time and space. We demonstrate that using a normal incidence geometry in time-resolved photoemission microscopy provides great advantages for in-situ imaging of surface plasmon polaritons in arbitrary plasmonic structures. A simple 1D wave-simulation is used to confirm the experimental results.


Surface plasmon polariton Two photon photoemission microcopy Time-resolved imaging Normal-incidence geometry 



The authors thank Harald Giessen and Bettina Frank from the University of Stuttgart for providing us with the high-quality Au platelets. Financial support from the Deutsche Forschungsgemeinschaft through programs SFB616 and SPP1391 and fruitful discussions within SFB1242 are gratefully acknowledged. DK acknowledges funding from the Irish Research Council and the Marie Curie Actions ELEVATE fellowship.


  1. 1.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311 (5758):189–193CrossRefGoogle Scholar
  2. 2.
    Atwater HA (2007) The Promise of Plasmonics. Sci Am 296:56–62CrossRefGoogle Scholar
  3. 3.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  4. 4.
    Specht M, Pedarnig JD, Heckl WM, Hansch TW (1992) Scanning Plasmon near-Field Microscope. Phys Rev Lett 68:476–479CrossRefGoogle Scholar
  5. 5.
    Drezet A, Hohenau A, Koller D, Stepanov A, Ditlbacher H, Steinberger B, Aussenegg F, Leitner A, Krenn J (2008) Leakage radiation microscopy of surface plasmon polaritons. Mater Sci Eng B-Adv 149:220–229CrossRefGoogle Scholar
  6. 6.
    Sandtke M, Engelen R, Schoenmaker H, Attema I, Dekker H, Cerjak I, Korterik J, Segerink F, Kuipers L (2008) Novel instrument for surface plasmon polariton tracking in space and time. Rev Sci Instrum 79:013704CrossRefGoogle Scholar
  7. 7.
    Gorodetski Y, Chervy T, Wang S, Hutchinson J, Drezet A, Genet C, Ebbesen TW (2016) Tracking surface plasmon pulses using ultrafast leakage imaging. Optica 3(1):48–53CrossRefGoogle Scholar
  8. 8.
    Schmidt O, Bauer M, Wiemann C, Porath R, Scharte M, Andreyev O, Schönhense G, Aeschlimann M (2002) Time-Resolved Two Photon Photoemission Electron Microscopy. Appl Phys B 74:223–227CrossRefGoogle Scholar
  9. 9.
    Cinchetti M, Gloskovskii A, Nepjiko S A, Schönhense G, Rochholz H, Kreiter M (2005) Photoemission Electron Microscopy as a Tool for the Investigation of Optical Near Fields. Phys Rev Lett 95:047601CrossRefGoogle Scholar
  10. 10.
    Chelaru L I, Horn-von Hoegen M, Thien D, Meyer zu Heringdorf FJ (2006) Fringe fields in nonlinear photoemission microscopy. Phys. Rev. B 73:115416CrossRefGoogle Scholar
  11. 11.
    Kubo A, Pontius N, Petek H (2007) Femtosecond Microscopy of Surface Plasmon Polariton Wave Packet Evolution at the Silver/Vacuum Interface. Nano Lett 7:470CrossRefGoogle Scholar
  12. 12.
    Chelaru L, Meyer zu Heringdorf F J (2007) In situ Monitoring of Surface Plasmons in Single-Crystalline Ag Nanowires. Surf. Sci. 601:4541CrossRefGoogle Scholar
  13. 13.
    Buckanie N, Kirschbaum P, Sindermann S, zu Heringdorf MF-J (2013) Interaction of Light and Surface Plasmon Polaritons in Ag Islands Studied by Nonlinear Photoemission Microscopy. Ultramicroscopy 130:49–53CrossRefGoogle Scholar
  14. 14.
    Creath K, Wyant J (1992) Moiré and Fringe Projection Techniques in Optical Shop Testing. Wiley Chichester, United KingdomGoogle Scholar
  15. 15.
    Meyer zu Heringdorf F J, Chelaru L, Möllenbeck S, Thien D, Horn von Hoegen M (2007) Femtosecond Photoemission Electron Microscopy. Surf Sci 601:4700–4705CrossRefGoogle Scholar
  16. 16.
    Lemke C, Schneider C, Leiner T, Bayer D, Radke J W, Fischer A, Melchior P, Evlyukhin A B, Chichkov B N, Reinhardt C, Bauer M, Aeschlimann M (2013) Spatiotemporal Characterization of SPP Pulse Propagation in Two-Dimensional Plasmonic Focusing Devices. Nano Lett 13:1053–1058CrossRefGoogle Scholar
  17. 17.
    Gong Y, Joly A G, Hu D, El-Khoury P Z, Hess W P (2015) Ultrafast Imaging of Surface Plasmons Propagating on a Gold Surface. Nano Lett 15:3472–3478CrossRefGoogle Scholar
  18. 18.
    Lemke C, Leißner T, Jauernik S, Klick A, Fiutowski J, Kjelstrup-Hansen J, Rubahn HG, Bauer M (2012) Mapping Surface Plasmon Polariton Propagation via Counter-Propagating Light Pulses. Optics Express 20:12877–12884CrossRefGoogle Scholar
  19. 19.
    Lemke C, Leißner T., Evlyukhin A, Radke JW, Klick A, Fiutowski J., Kjelstrup-Hansen J, Rubahn HG, Chichkov BN, Reinhardt C, Bauer M (2014) The Interplay between Localized and Propagating Plasmonic Excitations Tracked in Space and Time. Nano Lett 14:2431–2435CrossRefGoogle Scholar
  20. 20.
    Kahl P, Wall S, Witt C, Schneider C, Bayer D, Fischer A, Melchior P, Horn-von Hoegen M, Aeschlimann F J (2014) Normal-Incidence Photoemission Electron Microscopy (NI-PEEM) for Imaging Surface Plasmon Polaritons. Plasmonics 9:1401–1407CrossRefGoogle Scholar
  21. 21.
    Meyer zu Heringdorf F J, Kahl P, Makris A, Sindermann S, Podbiel D, Horn-von Hoegen M (2015) Signatures of Plasmoemission in Two Photon Photoemission Electron Microscopy. Proc SPIE 9361:93610WCrossRefGoogle Scholar
  22. 22.
    Wehner M U, Ulm M, Wegener M (1997) Scanning Interferometer Stabilized by use of Pancharatnam’s Phase. Opt Lett 22:1455–1457CrossRefGoogle Scholar
  23. 23.
    Podbiel D, Kahl P, Meyer zu Heringdorf F J (2016) Analysis of the contrast in normal-incidence surface plasmon photoemission microscopy in a pump-probe experiment with adjustable polarization. Appl Phys B 122:90CrossRefGoogle Scholar
  24. 24.
    Johnson P B, Christy R W (1972) Optical Constants of the Noble Metals. Phys Rev B 6:4370–4379CrossRefGoogle Scholar
  25. 25.
    Olmon R, Slovick B, Johnson T, Shelton D, Oh S H, Boreman GRMB (2012) Optical dielectric function of gold. Phys Rev B 86:235147CrossRefGoogle Scholar
  26. 26.
    Maier SA (2007) Plasmonics, SpringerGoogle Scholar
  27. 27.
    Pitarke J M, Silkin V M, Chulkov E V, Echenique P M (2007) Theory of surface plasmons and surface-plasmon polaritons. Rep Prog Phys 70:1–87CrossRefGoogle Scholar
  28. 28.
    Zhang L, Kubo A, Wang L, Petek H, Seideman T (2013) Universal aspects of ultrafast optical pulse scattering by a nanoscale asperity. J Phys Chem C 117:18648–18652CrossRefGoogle Scholar
  29. 29.
    Kaiser T, Falkner M, Qi J, Klein A, Steinert M, Menzel C, Rockstuhl C, Pertsch T Characterization of a Circular Optical Nanoantenna by Nonlinear Photoemission Electron MicroscopyGoogle Scholar
  30. 30.
    Radha B, Arif M, Datta R, Kundu T K, Kulkarni G U (2010) Movable Au Microplates as Fluorescence Enhancing Substrates for Live Cells. Nano Res 3:738– 747CrossRefGoogle Scholar
  31. 31.
    Schmidt T, Heun S, Slezak J, Diaz K, Prince J, Lilienkamp G, Bauer E (1998) SPELEEM: Combining LEEM and Spectroscopic Imaging. Surf Rev Lett 5(6):1287CrossRefGoogle Scholar
  32. 32.
    Xu L, Tempea G, Poppe A, Lenzner M, Spielmann C, Krausz F, Stingl A, Ferencz K (1997) High-power sub-10-fs Ti:sapphire oscillators. Appl Phys B 65:151–159CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Philip Kahl
    • 1
  • Daniel Podbiel
    • 1
  • Christian Schneider
    • 2
  • Andreas Makris
    • 1
  • Simon Sindermann
    • 1
    • 3
  • Christian Witt
    • 1
  • Deirdre Kilbane
    • 2
  • Michael Horn-von Hoegen
    • 1
  • Martin Aeschlimann
    • 2
  • Frank Meyer zu Heringdorf
    • 1
  1. 1.Faculty of Physics and CENIDEUniversity of Duisburg-EssenDuisburgGermany
  2. 2.Department of Physics and Research Center OPTIMASUniversity of KaiserslauternKaiserslauternGermany
  3. 3.Infineon Technologies AGWarsteinGermany

Personalised recommendations