, Volume 12, Issue 5, pp 1601–1611 | Cite as

Influence of Optical Properties of Ag NPs from Raphanus sativus Leaf Extract on Lanthanide Complexes

  • E. Ramya
  • L. JyothiEmail author
  • D. Narayana Rao


Simple rapid green synthesis route using Raphanus sativus leaf extract as reducing and stabilizing agent produced silver nanoparticles (Ag NPs) at room temperature. The formation of Ag NPs has been characterized and confirmed through TEM, XRD, FTIR and UV-visible absorption spectrum. Luminescence enhancement was observed only for few particular concentrations of Eu3+ and Sm3+ ions in Ag NPs. Enhancement of luminescence might be due to the increase in the electric dipole transition rate with the variation of local environment surrounding Ln3+ ions. Lifetimes of Ln3+ ions were found to increase with increase in Ag NP concentration to certain extent but found to decrease with further increase in Ag NPs. Nonlinear absorption behaviours in the picosecond (ps) and femtosecond (fs) time domains were studied by using the Z-scan technique. Third-order susceptibility was measured with ultrafast nonlinear optical response in the fs regime by using degenerate four-wave mixing (DFWM). High luminescence enhancement factors and good nonlinear optical properties of the biosynthesized Ag NPs have applications in biology and optics.


Biosynthesis Silver nanoparticles Raphanus sativus leaf extract Luminescence Nonlinear optical properties Optical limiting 



E. Ramya sincerely acknowledges the University Grant Commission-Basic Scientific Research (UGC-BSR), India, for senior research fellowship. Dr. L. Jyothi acknowledges UGC for women post-doctoral fellowship and DST for equipment grant through Fast Track Scheme for Young Scientists. The authors also acknowledge C. Viswanath from Prof. C.K. Jayasankar’s group, Sri Venkateswara University, Tirupati, India, for rendering help in decay measurements using a FLS 980 instrument.


  1. 1.
    Geddes CD, Lakowicz JR (2002) Metal-enhanced fluorescence. J Fluoresc 12:121–128CrossRefGoogle Scholar
  2. 2.
    Frederix F, Friedt JM, Choi KH, Laureyen W, Campitelli A, Mondelaers D, Maes G, Borghs G (2003) Biosensing based on light absorption of nanoscaled gold and silver particles. Anal Chem 75:6894–6900CrossRefGoogle Scholar
  3. 3.
    Wang J (2003) Nanoparticle-based electrochemical DNA detection. Anal Chim Acta 500:247–257CrossRefGoogle Scholar
  4. 4.
    Tripathi GNR (2003) P-Benzosemiquinone radical anion on silver nanoparticles in water. J Am Chem Soc 125:1178–1179CrossRefGoogle Scholar
  5. 5.
    Tian ZQ, Ren B (2004) Adsorption and reaction at electrochemical interfaces as probed by surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 55:197–229CrossRefGoogle Scholar
  6. 6.
    Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams SC, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal Nanocrystals. Nanotech 14:15–27CrossRefGoogle Scholar
  7. 7.
    Mansoori GA, George TF, Zhang G, Assoufid L (2007) Molecular building blocks for nanotechnology. Springer, New YorkCrossRefGoogle Scholar
  8. 8.
    Nair B, Pradeep T (2002) Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des 2:293–298CrossRefGoogle Scholar
  9. 9.
    Klaus T, Joerger R, Olsson E, Granqvist CG (2001) Bacteria as workers in the living factory: metal-accumulating bacteria and their potential for materials science. Proc Trends Biotechnol 19:15–20CrossRefGoogle Scholar
  10. 10.
    Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajaykumar PV, Alam M, Sastry M, Kumar R (2001) Bioreduction of AuCl4 ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  11. 11.
    Ahmad A, Mukherjee P, Senapati S, Mandal D, Khan MI, Kumar R, Sastry M (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum. Colloids Surf B Biointerfaces 28:313–318CrossRefGoogle Scholar
  12. 12.
    Shiv Shankar S, Ahmad A, Pasricha R, Sastry M (2003) Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem 13:1822–1826CrossRefGoogle Scholar
  13. 13.
    Begum NA, Mondal S, Saswati Basu LRA, Mandal D (2009) Biogenic synthesis of Au and Ag nanoparticles using aqueous solutions of black tea leaf extracts. Colloids Surf B Biointerfaces 71:113–118CrossRefGoogle Scholar
  14. 14.
    Philip D (2009) Biosynthesis of Au, Ag and Au–Ag nanoparticles using edible mushroom extract. Spectro Chim Acta Part A 73:374–381CrossRefGoogle Scholar
  15. 15.
    Badri Narayanan K, Sakthivel N (2008) Coriander leaf mediated biosynthesis of gold nanoparticles. Mat Lett 62:4588–4590CrossRefGoogle Scholar
  16. 16.
    Awwad AM, Salem NM, Abdeen AO (2012) Biosynthesis of silver nanoparticles using Olea europaea leaves extract and its antibacterial activity. Nanosci Nanotechnol 2:164–170CrossRefGoogle Scholar
  17. 17.
    Sun Y, Zheng Z, Yan Q, Gao J, Jiu H, Zhang Q (2006) Effects of Ag colloidal nanoparticles on luminescent properties of Eu(III) β-diketone. Mat Lett 60:2756–2758CrossRefGoogle Scholar
  18. 18.
    Kuladeep R, Jyothi L, Prakash P, Mayank Shekhar S, Durga Prasad M, Narayana Rao D (2013) Investigation of optical limiting properties of Aluminium nanoparticles prepared by pulsed laser ablation in different carrier media. J Appl Phys 114:243101CrossRefGoogle Scholar
  19. 19.
    Vigneshwaran N, Kathe AA, Varadarajan PV, Nachane RP, Balasubramanya RH (2007) Silver protein (core shell) nanoparticle production using spent mushroom substrate. Langmuir 23:7113–7117CrossRefGoogle Scholar
  20. 20.
    Quester K, Avalos-Borja M, Castro-Longoria E (2016) Controllable biosynthesis of small silver nanoparticles using fungal extract. J Biomater Nanobiotechnol 7:118–125CrossRefGoogle Scholar
  21. 21.
    Raheman F et al (2011) Silver nanoparticles: novel antimicrobial agent synthesized from an endophytic fungus Pestalotia sp. isolated from leaves of Syzygium cumini (L). Nano Biomed Eng 3:174–178CrossRefGoogle Scholar
  22. 22.
    Santhoshkumar T, Rahuman A, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C et al (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702CrossRefGoogle Scholar
  23. 23.
    Venkatpurwar V, Shiras A, Pokharkar V (2011) Capped gold nanoparticles as a novel carrier for delivery of anticancer drug: in vitro cytotoxicity study. Int J Pharm 409:314–320CrossRefGoogle Scholar
  24. 24.
    Vahabi K, Dorcheh SK (2014) Biosynthesis of silver nano-particles by trichoderma and its medical applications. In: Gupta VK, Schmoll M, Herrera- Estrella A, Upadhyay RS, Druzhinina I, Tuohy MG (eds) Biotechnology and biology of trichoderma. Elsevier, London, pp. 393–404CrossRefGoogle Scholar
  25. 25.
    Jeyaraj M, Sathishkumar G, Sivanandhan G, MubarakAli D, Rajesh M, Arun R et al (2013) Biogenic silver nanoparticles for cancer treatment: an experimental report. Colloids Surf B Biointerfaces 106:86–92CrossRefGoogle Scholar
  26. 26.
    Basha KS, Govindaraju K, Manikandan R, Ahn JS, Bae EY, Singaravelu G (2010) Phytochemical mediated gold nanoparticles and their PTP 1B inhibitory activity. Colloids Surf B Biointerfaces 75:405–409CrossRefGoogle Scholar
  27. 27.
    Pradeep T, Anshup (2009) Noble metal nanoparticles for water purification: a critical review. Thin Solid Films 517:6441–6478CrossRefGoogle Scholar
  28. 28.
    Sathyavathi R, Bala Murali Krishna M, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Moringa oleifera leaf extract and its application to optical limiting. J Nanosci Nanotechnol 10:1–5CrossRefGoogle Scholar
  29. 29.
    Chen F, Cheng J, Dai S, Zhe X, Zhang Q, Ji W, Tan R (2014) Third-order optical nonlinearity at 800 and 1300 nm in bismuthate glasses doped with silver nanoparticles. Opt Exp 22:13438–13447CrossRefGoogle Scholar
  30. 30.
    Nabika H, Deki S (2003) Enhancing and quenching functions of silver nanoparticles on the luminescent properties of europium complex in the solution phase. J Phys Chem B 107:35CrossRefGoogle Scholar
  31. 31.
    Mock JJ, Barbic M, Smith DR, Schultz DA, Schultz S (2002) Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J Chem Phys 116:6755–6759CrossRefGoogle Scholar
  32. 32.
    Wang Q, Lin S, Ming C, Zhao H, Liu J, Zhang C, Song F, Pun EYB (2011) Plasmon-enhanced luminescence of Eu complex by using silver nanocubes for different excitations. Mat Lett 65:905–907CrossRefGoogle Scholar
  33. 33.
    Fang XN, Song HW, Xie LP, Liu Q, Zhang H, Bai X, Dong B, Wang Y, Han W (2009) Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles. J Chem Phys 131:054506CrossRefGoogle Scholar
  34. 34.
    Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University, LondonCrossRefGoogle Scholar
  35. 35.
    Gagandeep K, Verma RK, Rai DK, Rai SB (2012) Plasmon-enhanced luminescence of Sm complex using silver nanoparticles in polyvinyl alcohol. J Lumin 132:1683–1687CrossRefGoogle Scholar
  36. 36.
    Ringler M, Schwemer A, Wunderlich M, Nichtl A, Kurzinger K, Klar TA, Feldmann J (2008) Shaping emission spectra of fluorescent molecules with single plasmonic nanoresonators. Phys Rev Lett 100:203002CrossRefGoogle Scholar
  37. 37.
    Singh P, Singh J (2013) Medicinal and therapeutic utilities of Raphanus sativus. Int J Pl An and Env Sci 3:2231–4490Google Scholar
  38. 38.
    Philip D, Unni C, Aswathy Aromal S, Vidhu VK (2011) Murraya koenigii leaf-assisted rapid green synthesis of silver and gold nanoparticles. Spectrochim Act Part A 78:899–904CrossRefGoogle Scholar
  39. 39.
    Philip D (2011) Mangifera indica leaf-assisted biosynthesis of well-dispersed silver nanoparticles. Spectrochim Act Part A 78:327–331CrossRefGoogle Scholar
  40. 40.
    Emekaa EE, Ojiefoha OC, Aleruchib C, Hassana LA, Christianab OM, Rebeccac M, Daread EO, Temitope AE (2014) Evaluation of antibacterial activities of silver nanoparticles green-synthesized using pineapple leaf (Ananas comosus). Micron 57:1–5CrossRefGoogle Scholar
  41. 41.
    Agasti N, Kaushik NK (2014) One pot synthesis of crystalline silver nanoparticles. J Nanomater 2:4–7Google Scholar
  42. 42.
    Mirgorod Yu A, Borodina VG, Borsch NA (2013) Investigation of interaction between silver ions and rutin in water by physical methods. Biophysics 58:743–747CrossRefGoogle Scholar
  43. 43.
    Tam F, Goodrich GP, Johnson BR, Halas NJ (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRefGoogle Scholar
  44. 44.
    George Z, Barnes WL (2008) Fluorescence enhancement through modified dye molecule absorption associated with the localized surface Plasmon resonances of metallic dimmers. New J of Phys 10:105002CrossRefGoogle Scholar
  45. 45.
    Wang Q, Song F, Lin S, Liu J, Zhao H, Zhang C, Ming C, Pun EYB (2011) Optical properties of silver nanoprisms and their influences on fluorescence of europium complex c. Opt Exp 19:6999–7006CrossRefGoogle Scholar
  46. 46.
    Pascal A, Palash B, Lukas N (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002CrossRefGoogle Scholar
  47. 47.
    Felicia T, Glenn P, Goodrich Bruce RJ, Naomi JH (2007) Plasmonic enhancement of molecular fluorescence. Nano Lett 7:496–501CrossRefGoogle Scholar
  48. 48.
    Fang H, Song H, Liu XQ, Zhang H, Bai X, Dong B, Wang Y, Han W (2009) Origin of luminescence enhancement and quenching of europium complex in solution phase containing Ag nanoparticles. J Chem Phys 131:054506CrossRefGoogle Scholar
  49. 49.
    Bala Murali Krishna M, Praveen Kumar V, Venkatramaiah N, Venkatesan R, Narayana Rao D (2011) Nonlinear optical properties of covalently linked graphene-metal porphyrin composite materials. Appl Phys Lett 98:081106CrossRefGoogle Scholar
  50. 50.
    Shukla V, Singh CP, Mukherjee C, Bindra KS (2013) Investigation of optical limiting in cobalt nanoparticles synthesized by laser ablation. Chem Phys Lett 555:149–153CrossRefGoogle Scholar
  51. 51.
    Bala Murali Krishna M, Giribabu L, Narayana Rao D (2012) Ultrafast third order nonlinear optical properties of water soluble zinc-octacarboxy-phthalocyanine. J Porphyrins Phthalocyanines 16:1015CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of PhysicsUniversity of HyderabadHyderabadIndia

Personalised recommendations