Plasmonics

, Volume 12, Issue 5, pp 1595–1600 | Cite as

Plasmon-Enhanced Second Harmonic Generation: from Individual Antennas to Extended Arrays

  • Milena Baselli
  • Anne-Laure Baudrion
  • Lavinia Ghirardini
  • Giovanni Pellegrini
  • Emilie Sakat
  • Luca Carletti
  • Andrea Locatelli
  • Costantino De Angelis
  • Paolo Biagioni
  • Lamberto Duò
  • Marco Finazzi
  • Pierre-Michel Adam
  • Michele Celebrano
Article

Abstract

We analyze the emission yield of the second harmonic generation (SHG) from dense ordered arrays of L-shaped Au nanoantennas within a well-defined collection angle and compare it to that of the isolated nanostructures designed with the same geometrical parameters. Thanks to the high antenna surface density, arrays display one order of magnitude higher SHG yield per unit surface with respect to isolated nanoantennas. The difference in the collected nonlinear signals becomes even more pronounced by reducing the collection angle, because of the efficient angular filtering that can be attained in dense arrays around the zero order. Albeit this key-enabling feature allows envisioning application of these platforms to nonlinear sensing, a normalization of the SHG yield to the number of excited antennas in the array reveals a reduced nonlinear emission from each individual antenna element. We explain this potential drawback in terms of resonance broadening, commonly observed in densely packed arrays, and angular filtering of the single antenna emission pattern provided by the array 0th order.

Keywords

Second harmonic generation Plasmonics Nanoantenna arrays Beaming 

References

  1. 1.
    Novotny L, Van Hulst N (2011) Antennas for light. Nature Photon. 5:83–90CrossRefGoogle Scholar
  2. 2.
    Biagioni P, Huang JS, Hecht B (2012) Nanoantennas for visible and infrared radiation. Rep Prog Phys 75:024402CrossRefGoogle Scholar
  3. 3.
    Kauranen M, Zayats AV (2014) Nonlinear plasmonics. Nature Photon 6:737–748CrossRefGoogle Scholar
  4. 4.
    Celebrano M, Zavelani-Rossi M et al (2009) Hollow-pyramid based scanning near-field optical microscope coupled to femtosecond pulses: a tool for nonlinear optics at the nanoscale. Rev Sci Instr 80:033704Google Scholar
  5. 5.
    Finazzi M, Biagioni P, Celebrano M, Duò L (2007) Selection rules for second-harmonic generation in nanoparticles. Phys Rev B 76:125414CrossRefGoogle Scholar
  6. 6.
    Zavelani-Rossi M, Celebrano M, Biagioni P et al (2008) Near-field second-harmonic generation in single gold nanoparticles. Appl Phys Lett 92:093119CrossRefGoogle Scholar
  7. 7.
    Butet J, Duboisset J, Bachelier G, Russier-Antoine I, Benichou E, Jonin C, Brevet PF (2010) Optical second harmonic generation of single metallic nanoparticles embedded in a homogeneous medium. Nano Lett 10:1717–1721CrossRefGoogle Scholar
  8. 8.
    Hubert C, Billot L, Adam P-M et al (2007) Role of surface plasmon in second harmonic generation from gold nanorods. Appl Phys Lett 90:181105CrossRefGoogle Scholar
  9. 9.
    Thyagarajan T, Rivier S, Lovera A, Martin OJF (2012) Enhanced second-harmonic generation from double resonant plasmonic antennae. Opt Express 20:12860–12865CrossRefGoogle Scholar
  10. 10.
    Aouani H, Navarro-Cia M, Rahmani M et al (2012) Multiresonant broadband optical antennas as efficient tunable nanosources of second harmonic light. Nano Lett 12:4997–5002CrossRefGoogle Scholar
  11. 11.
    Butet J, Dutta-Gupta S, Martin OJF (2014) Surface second-harmonic generation from coupled spherical plasmonic nanoparticles: Eigenmode analysis and symmetry properties. Phys Rev B 89:245449CrossRefGoogle Scholar
  12. 12.
    Czaplicki R, Husu H, Siikanen R, Mäkitalo J, Kauranen M (2013) Enhancement of second-harmonic generation from metal nanoparticles by passive elements. Phys Rev Lett 110:093902CrossRefGoogle Scholar
  13. 13.
    Ginzburg P, Krasavin A, Sonnefraud Y et al (2012) Nonlinearly coupled localized plasmon resonances: resonant second-harmonic generation. Phys Rev B 86:085422CrossRefGoogle Scholar
  14. 14.
    Zhang Y, Grady NK, Ayala-Orozco C, Halas NJ (2011) Three-dimensional nanostructures as highly efficient generators of second harmonic light. Nano Lett 11:5519–5523CrossRefGoogle Scholar
  15. 15.
    Rodrigo SG, Harutyunyan H, Novotny L (2013) Coherent control of light scattering from nanostructured materials by second-harmonic generation. Phys Rev Lett 110:177405CrossRefGoogle Scholar
  16. 16.
    Celebrano M, Wu X, Baselli M et al (2015) Mode matching in multiresonant plasmonic nanoantennas for enhanced second harmonic generation. Nature Nanotech 10:412–417CrossRefGoogle Scholar
  17. 17.
    Black L-J, Wiecha PR, Wang Y, de Groot CH, Paillard V, Girard C, Muskens OL, Arbouet A (2015) Tailoring second-harmonic generation in single L-shaped plasmonic nanoantennas from the capacitive to conductive coupling regime. ACS Photonics 11:1592–1601CrossRefGoogle Scholar
  18. 18.
    Cesca T, Pellegrini G, Bello V, Scian C, Mazzoldi P, Calvelli P, Battaglin G, Mattei G (2010) Nonlinear optical properties of Au-Ag nanoplanets made by ion beam processing of bimetallic nanoclusters in silica. Nucl Instrum Methods B 268:3227–3230CrossRefGoogle Scholar
  19. 19.
    Zheludev NI, Emelyanov VI (2004) Phase matched second harmonic generation from nanostructured metallic surfaces. J Opt A Pure Appl Opt 6:26–28CrossRefGoogle Scholar
  20. 20.
    McMahon MD, Lopez R, Haglund RF Jr, Ray EA, Bunton PH (2006) Second-harmonic generation from arrays of symmetric gold nanoparticles. Phys Rev B 73:041401CrossRefGoogle Scholar
  21. 21.
    Kujala S, Canfield BK, Kauranen M, Svirko Y, Turunen J (2007) Multipole interference in the second-harmonic optical radiation from gold nanoparticles. Phys Rev Lett 98:167403CrossRefGoogle Scholar
  22. 22.
    Awada C, Kessi F, Jonin C, Adam P-M, Kostcheev S, Bachelot R, Royer P, Russier-Antoine I, Benichou E, Bachelier G, Brevet PF (2011) On- and off-axis second harmonic from an array of gold metallic nanocylinders. J Appl Phys 110:023109CrossRefGoogle Scholar
  23. 23.
    Pellegrini G, Mattei G, Mazzoldi P (2011) Nanoantenna array for large-area emission enhancement. J Phys Chem C 115:24662–24665CrossRefGoogle Scholar
  24. 24.
    Segal N, Keren-Zur S, Hendler N, Ellenbogen T (2015) Controlling light with metamaterial-based nonlinear photonic crystals. Nature Phot 9:180–184CrossRefGoogle Scholar
  25. 25.
    Keren-Zur S, Avayu O, Michaeli L, Ellenbogen T (2016) Nonlinear beam shaping with plasmonic metasurfaces. ACS Phot. 3:117–123CrossRefGoogle Scholar
  26. 26.
    Czaplicki R, Kiviniemi A, Laukkanen J, Lehtolahti J, Kuittinen M, Kauranen M (2016) Surface lattice resonances in second-harmonic generation from metasurfaces. Opt Lett 41:2684–2687CrossRefGoogle Scholar
  27. 27.
    Stokes N, Cortie MB, Davis TI, McDonagh AM (2012) Plasmon resonances in V-shaped gold nanostructures. Plasmonics 7:235–243CrossRefGoogle Scholar
  28. 28.
    Vercruysse D, Sonnefraud Y, Verellen N, Fuchs FB, Di Martino G, Lagae L, Moshchalkov VV, Maier SA, Van Dorpe P (2013) Unidirectional side scattering of light by a single-element nanoantenna. Nano Lett 13:3843–3849CrossRefGoogle Scholar
  29. 29.
    Mesch M, Metzger B, Hentschel M, Giessen H (2016) Nonlinear plasmonic sensing. Nano Lett 16:3155–3159CrossRefGoogle Scholar
  30. 30.
    Pellegrini G, Mattei G, Mazzoldi P (2009) Tunable, directional and wavelength selective plasmonic nanoantenna arrays. Nanotechnology 20:065201CrossRefGoogle Scholar
  31. 31.
    Lindfors K, Dregely D, Lippitz M, Engheta N, Totzeck M, Giessen H (2016) Imaging and steering unidirectional emission from nanoantenna array metasurfaces. ACS Phot 3:286–292CrossRefGoogle Scholar
  32. 32.
    Silver S, James H M, Microwave antenna theory and design, The Maple Press Company, York, PA.Google Scholar
  33. 33.
    FDTD Solutions, Lumerical Inc., Canada.Google Scholar
  34. 34.
    Giannini V, Vecchi G, Gómez-Rivas J (2010) Lighting up multipolar surface plasmon polaritons by collective resonances in arrays of nanoantennas. Phys Rev Lett 105:266801CrossRefGoogle Scholar
  35. 35.
    Zhai LL, Kelly KL, Schatz GC (2003) The extinction spectra of silver nanoparticle arrays: influence of array structure on plasmon resonance wavelength and width. J Phys Chem B 107:7343–7350CrossRefGoogle Scholar
  36. 36.
    Comsol Multiphysics, Comsol, Inc., USA.Google Scholar
  37. 37.
    de Ceglia D, Vincenti MA, De Angelis C, Locatelli A, Haus JW, Scalora M (2015) Role of antenna modes and field enhancement in second harmonic generation from dipole nanoantennas. Opt Express 23:715–1729CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Milena Baselli
    • 1
  • Anne-Laure Baudrion
    • 2
  • Lavinia Ghirardini
    • 1
  • Giovanni Pellegrini
    • 1
  • Emilie Sakat
    • 1
    • 4
  • Luca Carletti
    • 3
  • Andrea Locatelli
    • 3
  • Costantino De Angelis
    • 3
  • Paolo Biagioni
    • 1
  • Lamberto Duò
    • 1
  • Marco Finazzi
    • 1
  • Pierre-Michel Adam
    • 2
  • Michele Celebrano
    • 1
  1. 1.Dipartimento di FisicaPolitecnico di MilanoMilanItaly
  2. 2.Laboratoire de Nanotechnologie et d’Instrumentation Optique, Institut Charles DelaunayUniversite’ de Technologie de Troyes, UMR CNRS 6281TroyesFrance
  3. 3.Department of Information EngineeringUniversity of BresciaBresciaItaly
  4. 4.Laboratoire Charles Fabry, Institut d’Optique Graduate SchoolCNRS, Université Paris-SaclayPalaiseauFrance

Personalised recommendations