, Volume 12, Issue 4, pp 1263–1280 | Cite as

Enhancing Diamond Color Center Fluorescence via Optimized Plasmonic Nanorod Configuration

  • András Szenes
  • Balázs Bánhelyi
  • Lóránt Zs. Szabó
  • Gábor Szabó
  • Tibor Csendes
  • Mária Csete


A novel numerical methodology has been developed, which makes possible to optimize arbitrary emitting dipole and plasmonic nano-resonator configuration with an arbitrary objective function. By selecting quantum efficiency as the objective function that has to be maximized at preselected Purcell factor criteria, optimization of plasmonic nanorod-based configurations has been realized to enhance fluorescence of NV and SiV color centers in diamond. Gold and silver nanorod-based configurations have been optimized to enhance excitation and emission separately, as well as both processes simultaneously, and the underlying nanophotonical phenomena have been inspected comparatively. It has been shown that considerable excitation enhancement is achieved by silver nanorods, while nanorods made of both metals are appropriate to enhance emission. More significant improvement can be achieved via silver nanorods at both wavelengths of both color centers. It has been proven that theoretical limits originating from metal dielectric properties can be approached by simultaneous optimization, which results in configurations determined by preferences corresponding to the emission. Larger emission enhancement is achieved via both metals in case of SiV center compared to the NV center. Gold and silver nanorod-based configurations making possible to improve SiV centers quantum efficiency by factors of 1.18 and 5.25 are proposed, which have potential applications in quantum information processing.


Localized surface plasmon polaritons Fluorescence quantum efficiency Purcell factor Defect-center materials Numerical approximation and analysis 



The research was supported by the National Research, Development and Innovation Office-NKFIH through project “Optimized nanoplasmonics” K116362. Mária Csete acknowledges that the project was supported by the János Bolyai Research Scholarship of the Hungarian Academy of Sciences. The authors would like to thank helpful discussions with Professor Niek van Hulst and Professor Lukas Novotny concerning the plasmonic enhancement of fluorescence emission as well as Professor Fedor Jelezko and Professor Ádám Gali regarding the intrinsic quantum efficiency of color centers.

Supplementary material

11468_2016_384_MOESM1_ESM.pdf (146 kb)
ESM 1 (PDF 145 kb)


  1. 1.
    Purcell EM, Torrey HC, Pound RV (1946) Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 69:37CrossRefGoogle Scholar
  2. 2.
    Gersten J, Nitzan A (1981) Spectroscopic properties of molecules interacting with small dielectric particles. J Chem Phys 75:1139CrossRefGoogle Scholar
  3. 3.
    C. F. Bohren and D. R. Huffman (1998) Absorption and scattering of light by small particles. Wiley Inter-ScienceGoogle Scholar
  4. 4.
    Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89:203002CrossRefGoogle Scholar
  5. 5.
    Larkin IA, Stockman MI, Achermann M, Klimov VI (2004) Dipolar emitters at nanoscale proximity of metal surfaces: giant enhancement of relaxation in microscopic theory. Phys Rev B 69:121403(R)CrossRefGoogle Scholar
  6. 6.
    Dung HT, Knöll L, Welsch D-G (2001) Decay of an excited atom near an absorbing microsphere. Phys Rev A 64:013804CrossRefGoogle Scholar
  7. 7.
    Das PC, Puri A (2002) Energy flow and fluorescence near a small metal particle. Phys Rev B 65:155416CrossRefGoogle Scholar
  8. 8.
    Rigneault H, Capoulade J, Dintinger J, Wenger J, Bonod N, Popov E, Ebbesen TW, Lenne P-F (2005) Enhancement of single-molecule fluorescence detection in subwavelength apertures. Phys Rev Lett 95:117401CrossRefGoogle Scholar
  9. 9.
    Blanco LA, García de Abajo FJ (2004) Spontaneous light emission in complex nanostructures. Phys Rev B 69:205414CrossRefGoogle Scholar
  10. 10.
    Thomas M, Greffet J-J, Carminati R, Arias-Gonzalez JR (2004) Single-molecule spontaneous emission close to absorbing nanostructures. Appl Phys Lett 85:3863CrossRefGoogle Scholar
  11. 11.
    Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002CrossRefGoogle Scholar
  12. 12.
    Carminati R, Greffet J-J, Henkel C, Vigoureux JM (2005) Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle. Opt Comm 261:368CrossRefGoogle Scholar
  13. 13.
    Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97:206806CrossRefGoogle Scholar
  14. 14.
    Muskens OL, Giannini V, Sánchez-Gil JA, Gómez Rivas J (2007) Strong enhancement of the radiative decay rate of emitters by single plasmonic nanoantennas. Nano Lett 7(9):2871–2875CrossRefGoogle Scholar
  15. 15.
    Taminiau TH, Stefani FD, van Hulst NF (2008) Single emitters coupled to plasmonic nano-antennas: angular emission and collection efficiency. New J Phys 10:105005CrossRefGoogle Scholar
  16. 16.
    Mertens H, Koenderink AF, Polman A (2007) Plasmon-enhanced luminescence near noble-metal nanospheres: comparison of exact theory and an improved Gersten and Nitzan model. Phys Rev B 76:115123CrossRefGoogle Scholar
  17. 17.
    Francs GC d, Bouhelier A, Finot E, Weeber JC, Dereux A, Girard C, Dujardin E (2008) Fluorescence relaxation in the near-field of a mesoscopic metallic particle: distance dependence and role of plasmon modes. Opt Express 16:17654–17666CrossRefGoogle Scholar
  18. 18.
    Sik Kim Y, Leung PT, George TF (1988) Classical decay rates for molecules in the presence of a spherical surface: a complete treatment. Surf Sci 195:1–14CrossRefGoogle Scholar
  19. 19.
    Zhang JB, Ho JF, Cheng L, Teo QQ, Sze JY, Luk’yanchuk B (2010) Numerical and experimental study of fluorescence enhancement with silica encapsulated metallic nanoparticles. Proc SPIE 7577:75770LCrossRefGoogle Scholar
  20. 20.
    Lu G, Zhang T, Li W, Hou L, Liu J, Gong Q (2011) Single-molecule spontaneous emission in the vicinity of an individual gold nanorod. J Phys Chem C 115(32):15822–15828CrossRefGoogle Scholar
  21. 21.
    Liu S-Y, Huang L, Li J-F, Wang C, Li Q, Xu H-X, Guo HL, Meng Z-M, Shi Z, Li Z-Y (2013) Simultaneous excitation and emission enhancement of fluorescence assisted by double plasmon modes of gold nanorods. Journal of Phys Chem C 117:10636CrossRefGoogle Scholar
  22. 22.
    Miller OD, Polimeridis AG, Homer Reid MT, Hsu CW, DeLacy BG, Joannopoulos JD, Soljačić M, Johnson SG (2016) Fundamental limits to optical response in absorptive systems. Opt Express 24(4):3329–3364CrossRefGoogle Scholar
  23. 23.
    Yang Y, Zhen B, Hsu CW, Miller OD, Joannopoulos JD, Soljačić M (2016) Optically thin metallic films for high-radiative-efficiency plasmonics. Nano Lett 16(7):4110–4117CrossRefGoogle Scholar
  24. 24.
    Kühn S, Håkanson U, Rogobete L, Sandoghdar V (2006) Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna. Phys Rev Lett 97:017402CrossRefGoogle Scholar
  25. 25.
    Chang DE, Sørensen AS, Hemmer PR, Lukin MD (2006) Quantum optics with surface plasmons. Phys Rev Lett 97:053002CrossRefGoogle Scholar
  26. 26.
    Beveratos A, Brouri R, Gacoin T, Villing A, Poizat J-P, Grangier P (2002) Single photon quantum cryptography. Phys Rev Lett 89:187901CrossRefGoogle Scholar
  27. 27.
    Gurudev Dutt MV, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov AS, Hemmer PR, Lukin MD (2007) Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316(5829):1312–1316CrossRefGoogle Scholar
  28. 28.
    Neuman P, Mizuochi N, Rempp F, Hemmer P, Watanabe H, Yamasaki S, Jaques V, Gaebel T, Jelezko F, Wrachtrup J (2008) Multipartite entanglement among single spins in diamond. Science 320(5881):1326–1329CrossRefGoogle Scholar
  29. 29.
    S. C. Benjamin, B. W. Lovett and J. M. Smith (2009) Prospects for measurement-based quantum computing with solid state spins. Laser & Photon. Rev 3 (6) 556–574Google Scholar
  30. 30.
    Bernien H, Hensen B, Pfaff W, Koolstra G, Blok MS, Robledo L, Taminiau TH, Markham M, Twitchen DJ, Childress L, Hanson R (2013) Heralded entanglement between solid-state qubits separated by three metres. Nature 497:86–90CrossRefGoogle Scholar
  31. 31.
    Siyushev P, Pinto H, Vörös M, Gali A, Jelezko F, Wrachtrup J (2013) Optically controlled switching of the charge state of a single nitrogen-vacancy center in diamond at cryogenic temperatures. Phys Rev Lett 110:167402CrossRefGoogle Scholar
  32. 32.
    Aharonovich I, Greentree AD, Prawer S (2011) Diamond photonics. Nat Photonics 5:397–405CrossRefGoogle Scholar
  33. 33.
    Hausmann BJM, Babinec TM, Choy JT, Hodges JS, Hong S, Bulu I, Yacoby A, Lukin MD, Loncar M (2011) Single-color centers implanted in diamond nanostructures. New J Phys 13:045004CrossRefGoogle Scholar
  34. 34.
    Altewischer E, van Exter MP, Woerdman JP (2002) Plasmon-assisted transmission of entangled photons. Nature 418:304–306CrossRefGoogle Scholar
  35. 35.
    Moreno E, García-Vidal FJ, Erni D, Ignacio Cirac J, Martín-Moreno L (2004) Theory of plasmon-assisted transmission of entangled photons. Phys Rev Lett 92:236801CrossRefGoogle Scholar
  36. 36.
    Choy JT, Hausmann BJM, Babinec TM, Bulu I, Khan M, Maletinsky P, Yacoby A, Loncar M (2011) Theory of plasmon-assisted transmission of entangled photons. Nat Photonics 5:738–743CrossRefGoogle Scholar
  37. 37.
    Bulu I, Babinec T, Hausmann B, Choy JT, Loncar M (2011) Plasmonic resonators for enhanced diamond NV-center single photon sources. Opt Express 19(6):5268–5276CrossRefGoogle Scholar
  38. 38.
    M. Loncar, A. Faraon (2013) Quantum photonic networks in diamond in nitrogen-vacancy centers: Physics and applications MRS Bulletin 38 (2), 144–148Google Scholar
  39. 39.
    J. T. Choy, I. Bulu, B. J. M. Hausmann, E. Janitz, I-C. Huang, M. Loncar (2013) Spontaneous emission and collection efficiency enhancement of single emitters in diamond via plasmonic cavities and gratings. Appl Phys Lett 103, 161101Google Scholar
  40. 40.
    de Leon NP, Shields BJ, Yu CL, Englund DE, Akimov AV, Lukin MD, Park H (2012) Tailoring light-matter interaction with a nanoscale plasmon resonator. Phys Rev Lett 108:226803CrossRefGoogle Scholar
  41. 41.
    Manson NB, Harrison JP, Sellars MJ (2006) Nitrogen-vacancy center in diamond: model of the electronic structure and associated dynamics. Phys Rev B 74:104303CrossRefGoogle Scholar
  42. 42.
    Wang C, Kurtsiefer C, Weinfurter H, Burchard B (2006) Single photon emission from SiV centres in diamond produced by ion implantation. J Phys B 39(1):37CrossRefGoogle Scholar
  43. 43.
    Rogers LJ, Jahnke KD, Teraji T, Marseglia L, Müller C, Naydenov B, Schauffert H, Kranz C, Isoya J, McGuinness LP, Jelezko F (2014) Multiple intrinsically identical single-photon emitters in the solid state. Nat Commun 5:4739CrossRefGoogle Scholar
  44. 44.
    Rogers LJ, Jahnke KD, Doherty MW, Dietrich A, McGuinness LP, Müller C, Teraji T, Sumiya H, Isoya J, Manson NB, Jelezko F (2014) Electronic structure of the negatively charged silicon-vacancy center in diamond. Phys Rev B 89:235101CrossRefGoogle Scholar
  45. 45.
    Wolf SA, Rosenberg I, Rapaport R, Bar-Gill N (2015) Purcell-enhanced optical spin readout of nitrogen-vacancy centers in diamond. Phys Rev B 92:235410CrossRefGoogle Scholar
  46. 46.
    Bermúdez-Ureña E, Gonzalez-Ballestero C, Geiselmann M, Marty R, Radko IP, Holmgaard T, Alaverdyan Y, Moreno E, García-Vidal FJ, Bozhevolnyi SI, Quidant R (2015) Coupling of individual quantum emitters to channel plasmons. Nat Commun 6:7883CrossRefGoogle Scholar
  47. 47.
    Hoang TB, Akselrod GM, Argyropoulos C, Huang J, Smith DR, Mikkelsen MH (2015) Ultrafast spontaneous emission source using plasmonic nanoantennas. Nat Commun 6:1CrossRefGoogle Scholar
  48. 48.
    Pelton M (2015) Modified spontaneous emission in nanophotonic structures. Nat Photonics 9:427CrossRefGoogle Scholar
  49. 49.
    E. D. Palik (2002) Handbook of optical constants of solids. Academic PressGoogle Scholar
  50. 50.
    Bharadwaj P, Novotny L (2007) Spectral dependence of single molecule fluorescence enhancement. Opt Express 15(21):14266CrossRefGoogle Scholar
  51. 51.
    Novotny L, Hecht B (2012) Principles of nano-optics. Cambridge University Press, Second editionCrossRefGoogle Scholar
  52. 52.
    M. Csete, A. Szenes, L. Zs. Szabó, B. Bánhelyi, T. Csendes and G. Szabó (2016) Enhancing fluorescence of diamond vacancy centers near gold nanorods via geometry optimization. Comsol ConferenceGoogle Scholar
  53. 53.
    M. Csete, L. Zs. Szabó, A. Szenes, B. Bánhelyi, T. Csendes and G. Szabó (2016) Optimizing fluorescence of diamond color centers encapsulated into core-shell nanoresonators. Comsol ConferenceGoogle Scholar
  54. 54.
    Csendes T, Garay BM, Banhelyi B (2006) A verified optimization technique to locate chaotic regions of Hénon systems. J Glob Optim 35(1):145CrossRefGoogle Scholar
  55. 55.
    Csendes T, Pál L, Oscar J, Sendín H, Banga JR (2008) The GLOBAL optimization method revisited. Optim Lett 2(4):445–454CrossRefGoogle Scholar
  56. 56.
    Pál L, Csendes T, Markót MC, Neumaier A (2012) Black-box optimization benchmarking of the GLOBAL method. Evolutionary Comp 20:609–639CrossRefGoogle Scholar
  57. 57.
    Pinchuk A, von Plessen G, Kreibig U (2004) J Phys D 37(22):3133CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • András Szenes
    • 1
  • Balázs Bánhelyi
    • 2
  • Lóránt Zs. Szabó
    • 1
  • Gábor Szabó
    • 1
  • Tibor Csendes
    • 2
  • Mária Csete
    • 1
  1. 1.Department of Optics and Quantum ElectronicsUniversity of SzegedSzegedHungary
  2. 2.Institute of InformaticsUniversity of SzegedSzegedHungary

Personalised recommendations