, Volume 12, Issue 2, pp 237–244 | Cite as

Plasmonic Perovskite Solar Cells Utilizing Au@SiO2 Core-Shell Nanoparticles

  • Nilesh Kumar Pathak
  • Nikhil Chander
  • Vamsi K. Komarala
  • R. P. Sharma


The role of Au@SiO2 core-shell nanoparticles on optical properties of perovskite solar cells has been explored using both the theoretical computations and the experiments. A quasi-static model is used to study the surface plasmon resonances (SPRs) of Au@SiO2 core-shell nanospheres. Au@SiO2 core-shell nanoparticles, with varying shell thickness and core radius, were assumed to be embedded in methylammonium lead triiodide (CH3NH3PbI3) perovskite active layer. Enhanced absorption in the active layer is obtained due to the near-field plasmonic effect of the embedded core-shell nanoparticles. Theoretical modelling shows that a shell thickness of 1 nm and core diameter of 20 nm provide absorption enhancement in the orange-red region of the electromagnetic spectrum. Experiments performed using ∼20-nm-sized Au@SiO2 core-shell nanoparticles (with a shell thickness of ∼1 nm) clearly demonstrate the enhanced absorption and the resulting enhancement in photocurrent due to the plasmonic effects. An efficiency enhancement of over 18 % is obtained for the best plasmonic perovskite solar cell containing Au@SiO2 nanoparticles in Au@SiO2-TiO2 weight ratio of ∼1 %. Incident photon-to-current conversion efficiency (IPCE) data also showed enhancement in photocurrent for the plasmonic device. The quasi-static modelling approach provides a good correlation between theory and experiment.


Perovskite solar cells Plasmonics Core-shell nanoparticles Quasi-static approximation 



NKP and RPS would like to thank the Ministry of New and Renewable Energy (MNRE, Government of India) for the financial support.


  1. 1.
    Park NG (2015) Perovskite solar cells: an emerging photovoltaic technology. Mater Today 18:65–72CrossRefGoogle Scholar
  2. 2.
    Green MA, Ho-Baillie A, Snaith HJ (2014) The emergence of perovskite solar cells. Nat Photonics 8:506–514CrossRefGoogle Scholar
  3. 3.
    Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2015) Solar cell efficiency tables (version 47). Prog Photovolt Res Appl 23:805–812CrossRefGoogle Scholar
  4. 4.
    Chander N, Khan AF, Chandrasekhar PS, Thouti E, Swami SK, Dutta V, Komarala VK (2014) Reduced ultraviolet light induced degradation and enhanced light harvesting using YVO4:Eu3+ down-shifting nano-phosphor layer in organometal halide perovskite solar cells. Appl Phys Lett 105:033904CrossRefGoogle Scholar
  5. 5.
    Leijtens T, Eperon GE, Noel NK, Habisreutinger SN, Petrozza A, Snaith HJ (2015) Stability of metal halide perovskite solar cells. Adv Energy Mater 5:1500963CrossRefGoogle Scholar
  6. 6.
    Sardana SK, Chava VSN, Thouti E, Chander N, Kumar S, Reddy SR, Komarala VK (2014) Influence of surface plasmon resonances of silver nanoparticles on optical and electrical properties of textured silicon solar cell. Appl Phys Lett 104:073903CrossRefGoogle Scholar
  7. 7.
    Chander N, Khan AF, Thouti E, Sardana SK, Chandrasekhar PS, Dutta V, Komarala VK (2014) Size and concentration effects of gold nanoparticles on optical and electrical properties of plasmonic dye sensitized solar cells. Sol Energy 109:11–23CrossRefGoogle Scholar
  8. 8.
    Li X, Choy WCH, Lu H, Sha WEI, Ho AHP (2013) Efficiency enhancement of organic solar cells by using shape-dependent broadband plasmonic absorption in metallic nanoparticles. Adv Funct Mater 23:2728–2735CrossRefGoogle Scholar
  9. 9.
    Chander N, Chandrasekhar PS, Komarala VK (2014) Solid state plasmonic dye sensitized solar cells based on solution processed perovskite CsSnI3 as the hole transporter. RSC Adv 4:55658–55665CrossRefGoogle Scholar
  10. 10.
    Chander N, Singh P, Khan AF, Dutta V, Komarala VK (2014) Photocurrent enhancement by surface plasmon resonance of gold nanoparticles in spray deposited large area dye sensitized solar cells. Thin Solid Films 568:74–80CrossRefGoogle Scholar
  11. 11.
    Zhang W, Saliba M, Stranks SD, Sun Y, Shi X, Wiesner U, Snaith HJ (2013) Enhancement of perovskite-based solar cells employing core–shell metal nanoparticles. Nano Lett 13:4505–4510CrossRefGoogle Scholar
  12. 12.
    Lu Z, Pan X, Ma Y, Li Y, Zheng L, Zhang D, Xu Q, Chen Z, Wang S, Qu B, Liu F, Huang Y, Xiao L, Gong Q (2015) Plasmonic-enhanced perovskite solar cells using alloy popcorn nanoparticles. RSC Adv 5:11175–11179CrossRefGoogle Scholar
  13. 13.
    Saliba M, Zhang W, Burlakov VM, Stranks SD, Sun Y, Ball JM, Johnston MB, Goriely A, Wiesner W, Snaith HJ (2015) Plasmonic-induced photon recycling in metal halide perovskite solar cells. Adv Funct Mater 25:5038–5046CrossRefGoogle Scholar
  14. 14.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205CrossRefGoogle Scholar
  15. 15.
    Thouti E, Chander N, Dutta V, Komarala VK (2013) Optical properties of Ag nanoparticle layers deposited on silicon substrates. J Opt 15:035005CrossRefGoogle Scholar
  16. 16.
    Ji A, Sharma R, Pathak H, Pathak NK, Sharma RP (2015) Numerical simulation of plasmonic light trapping in thin-film Si solar cells: surface coverage effect. J Phys D Appl Phys 48:275101–275107CrossRefGoogle Scholar
  17. 17.
    Snaith HJ (2013) The emergence of a new era for low-cost, high-efficiency solar cells. J Phys Chem Lett 4:3623–3630CrossRefGoogle Scholar
  18. 18.
    Green MA (2004) Recent developments in photovoltaics. Sol Energy 76:3CrossRefGoogle Scholar
  19. 19.
    Yin YD, Gao L, Qiu CW (2011) Electromagnetic theory of tunable SERS manipulated with spherical anisotropy in coated nanoparticles. J Phys Chem C 115:8893–8899CrossRefGoogle Scholar
  20. 20.
    Pathak NK, Alok J, Sharma RP (2014) Study of efficiency enhancement in layered geometry of excitonic-plasmonic solar cell. Appl Phy A 115:1445–1450CrossRefGoogle Scholar
  21. 21.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  22. 22.
    Maier S (2007) Plasmonics: fundamentals and applications. Springer, BerlinGoogle Scholar
  23. 23.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRefGoogle Scholar
  24. 24.
    Noguez C (2007) Surface plasmons on metal nanoparticles: the influence of shape and physical environment. J Phys Chem C 111:3806CrossRefGoogle Scholar
  25. 25.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Wiley, New YorkCrossRefGoogle Scholar
  26. 26.
    Pathak NK, Pandey GK, Ji A, Sharma RP (2015) Study of light extinction and surface plasmon resonances of metal nanocluster: a comparison between coated and non-coated nanogeometry. Plasmonics 10:1597CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Plasma Simulation Laboratory, Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia
  2. 2.National Centre for Flexible Electronics, Samtel Centre for Display TechnologiesIndian Institute of Technology KanpurKanpurIndia
  3. 3.Photovoltaic Laboratory, Centre for Energy StudiesIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations