Advertisement

Plasmonics

, Volume 12, Issue 1, pp 117–124 | Cite as

Design Method of a Broadband Wide-Angle Plasmonic Absorber in the Visible Range

  • Xianshun Ming
  • Qiaofeng TanEmail author
Article

Abstract

A new design method of a broadband wide-angle metal-dielectric-metal plasmonic absorber is presented based on the cavity mode theory. The broadband absorption is implemented by filling a unit cell with multi-size square metal patches resonant at adjacent wavelengths, with the widths of the patches and thickness of the dielectric layer optimized with the presented method. A broadband plasmonic absorber working in the visible range is designed, the absorption of which is insensitive to the azimuth angle of incident field and keeps over 0.7 at incident angle up to 60° for p polarization and above 0.6 at up to 40° for s polarization.

Keywords

Plasmonic absorber Surface plasmons Resonant cavity modes Broadband wide-angle absorption 

Notes

Acknowledgement

This work was supported by the National Basic Research Program of China under grant No. 2013CB329202.

References

  1. 1.
    Watts CM, Liu X, Padilla WJ (2012) Metamaterial electromagnetic wave absorbers. Adv Mater 24:OP98–OP120Google Scholar
  2. 2.
    Hedayati MK, Faupel F, Elbahri M (2014) Review of plasmonic nanocomposite metamaterial absorber. Mater 7:1221–1248CrossRefGoogle Scholar
  3. 3.
    Isenstadt A, Xu J (2013) Subwavelength metal optics and antireflection. Electron Mater Lett 9:125–132CrossRefGoogle Scholar
  4. 4.
    Liu N, Mesch M, Weiss T, Hentschel M, Giessen H (2010) Infrared perfect absorber and its application as plasmonic sensor. Nano Lett 10:2342–2348CrossRefGoogle Scholar
  5. 5.
    Li Y, Su L, Shou C, Yu C, Deng J, Fang Y (2013) Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared. Sci Rep 3:2865Google Scholar
  6. 6.
    Liu Z, Liu G, Liu X, Huang S, Pan P, Wang Y, Gu G (2015) Improving plasmon sensing performance by exploiting the spatially confined field. Plasmonics. doi: 10.1007/s11468-015-0017-0 Google Scholar
  7. 7.
    Liu X, Tyler T, Starr T, Starr AF, Jokerst NM, Padilla WJ (2011) Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys Rev Lett 107:045901CrossRefGoogle Scholar
  8. 8.
    Wu C, Neuner B III, John J, Milder A, Zollars B, Savoy S, Shvets G (2012) Metamaterial-based integrated plasmonic absorber/emitter for solar thermo-photovoltaic systems. J Opt 14:024005CrossRefGoogle Scholar
  9. 9.
    Wang Y, Sun T, Paudel T, Zhang Y, Ren Z, Kempa K (2011) Metamaterial-plasmonic absorber structure for high efficiency amorphous silicon solar cells. Nano Lett 12:440–445CrossRefGoogle Scholar
  10. 10.
    Cheng CW, Abbas MN, Chang ZC, Shih MH, Wang CM, Wu MC, Chang YC (2011) Angle-independent plasmonic infrared band-stop reflective filter based on the Ag/SiO 2/Ag T-shaped array. Opt Lett 36:1440–1442CrossRefGoogle Scholar
  11. 11.
    Cui Y, Xu J, Fung KH, Jin Y, Kumar A, He S, Fang NX (2011) A thin film broadband absorber based on multi-sized nanoantennas. Appl Phys Lett 99:253101CrossRefGoogle Scholar
  12. 12.
    Wu C, Neuner B III, Shvets G, John J, Milder A, Zollars B, Savoy S (2011) Large-area wide-angle spectrally selective plasmonic absorber. Phys Rev B 84:075102CrossRefGoogle Scholar
  13. 13.
    Wu C, Shvets G (2012) Design of metamaterial surfaces with broadband absorbance. Opt Lett 37:308–310CrossRefGoogle Scholar
  14. 14.
    Ming X, Tan Q (2014) Design and performance of a wide-angle infrared plasmonic absorber. AOMATT 2014: 92830U-92830U. SPIEGoogle Scholar
  15. 15.
    Hao J, Zhou L, Qiu M (2011) Nearly total absorption of light and heat generation by plasmonic metamaterials. Phys Rev B 83:165107CrossRefGoogle Scholar
  16. 16.
    Wang H, Wang L (2013) Perfect selective metamaterial solar absorbers. Opt Express 21:A1078–A1093CrossRefGoogle Scholar
  17. 17.
    Ye YQ, Jin Y, He S (2010) Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime. J Opt Soc Am B 27:498–504CrossRefGoogle Scholar
  18. 18.
    Cheng CW, Abbas MN, Chiu CW, Lai KT, Shih MH, Chang YC (2012) Wide-angle polarization independent infrared broadband absorbers based on metallic multi-sized disk arrays. Opt Express 20(9):10376–10381CrossRefGoogle Scholar
  19. 19.
    Nielsen MG, Pors A, Albrektsen O, Bozhevolnyi SI (2012) Efficient absorption of visible radiation by gap plasmon resonators. Opt Express 20:13311–13319CrossRefGoogle Scholar
  20. 20.
    Zhang B, Zhao Y, Hao Q, Kiraly B, Khoo IC, Chen S, Huang TJ (2011) Polarization-independent dual-band infrared perfect absorber based on a metal-dielectric-metal elliptical nanodisk array. Opt Express 19:15221–15228CrossRefGoogle Scholar
  21. 21.
    Wang BX, Wang GZ, Wang LL (2015) Design of a novel dual-band terahertz metamaterial absorber. Plasmonics. doi: 10.1007/s11468-015-0076-2 Google Scholar
  22. 22.
    Hu C, Zhao Z, Chen X, Luo X (2009) Realizing near-perfect absorption at visible frequencies. Opt Express 17(13):11039–11044CrossRefGoogle Scholar
  23. 23.
    Maier SA (2006) Plasmonic field enhancement and SERS in the effective mode volume picture. Opt Express 14(5):1957–1964CrossRefGoogle Scholar
  24. 24.
    OK JG, Youn HS, Kwak MK, Lee KT, Shin YJ, Guo LJ, Greenwald A, Liu Y (2012) Continuous and scalable fabrication of flexible metamaterial films via roll-to-roll nanoimprint process for broadband plasmonic infrared filters. Appl Phys Lett 101:223102CrossRefGoogle Scholar
  25. 25.
    Zhang Q, Bai L, Bai Z, Hu P, Liu C (2015) Theoretical analysis and design of a near-infrared broadband absorber based on EC model. Opt Express 23:8910–8917CrossRefGoogle Scholar
  26. 26.
    Li L, Yang Y, Liang C (2011) A wide-angle polarization-insensitive ultra-thin metamaterial absorber with three resonant modes. J Appl Phys 110:063702CrossRefGoogle Scholar
  27. 27.
    Liu Z, Liu X, Huang S, Pan P, Chen J, Liu G, Gu G (2015) Automatically acquired broadband plasmonic-metamaterial black absorber during the metallic film-formation. ACS Appl Mater & Ins 7:4962–4968CrossRefGoogle Scholar
  28. 28.
    Balanis CA (2005) Antenna theory: analysis and design. Wiley, HobokenGoogle Scholar
  29. 29.
    Minkowski F, Wang F, Chakrabarty A, Wei QH (2014) Resonant cavity modes of circular plasmonic patch nanoantennas. Appl Phys Lett 104:021111CrossRefGoogle Scholar
  30. 30.
    Hammerstad EO (1975) Equations for microstrip circuit design. In Microwave Conference 1975, 5th European: 268–272. IEEEGoogle Scholar
  31. 31.
    Davis TJ (2009) Surface plasmon modes in multi-layer thin-films. Opt Commun 282:135–140CrossRefGoogle Scholar
  32. 32.
    Powell MJD (1970) A FORTRAN subroutine for solving systems of nonlinear algebraic equations. In: Rabinowitz P, Numerical methods for nonlinear algebraic equations. Gordon and Breach, London, Ch7.Google Scholar
  33. 33.
    Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Optics 37:5271–5283CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Precision Instrument, State Key Laboratory of Precision Measurement Technology and InstrumentsTsinghua UniversityBeijingChina

Personalised recommendations