, Volume 11, Issue 5, pp 1407–1416 | Cite as

Near-Field Optical Properties of Ag x Au1−x Nanoparticle Chains Embedded in a Dielectric Matrix

  • Alexandre FafinEmail author
  • Senda Yazidi
  • Sophie Camelio
  • David Babonneau


We study by the finite-difference time-domain method the near-field optical properties of isolated or coupled Ag x Au1−x alloy nanoparticles shallowly buried inside dielectric matrices. The optical index of alloys is obtained experimentally using spectroscopic ellipsometry measurements from multilayered thin films fabricated by ion-beam sputtering. Then, we numerically investigate the influence of the nanoparticle composition, interparticle gap and capping-layer thickness on the amplitude and spatial extent of the electric field in the vicinity of ellipsoidal nanoparticles. Our calculations provide evidence that pure metal nanoparticles (Ag or Au) exhibit a greater field enhancement associated with a larger out-of-plane extent compared to alloy nanoparticles, an effect that is even more pronounced when the optical index of surrounding matrix is increased. Moreover, we show that the optimal gap between nanoparticles to maximize the amplitude of the electric field at the capping layer/air interface results from a delicate balance, which strongly depends on the thickness of the dielectric capping layer.


Localized surface plasmon resonance (LSPR) Ag-Au alloy nanoparticles Finite-difference time-domain method (FDTD) Near-field enhancement Hot spots 



The authors are grateful to P. Guérin for assistance during the growth of Ag x Au1−x thin films by ion-beam sputtering deposition. This work has been partially funded by the French National Agency (QMAX project no. ANR-09-NANO-031) in the frame of its 2009 programme in Nanosciences, Nanotechnologies and Nanosystems (P3N2009).


  1. 1.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  2. 2.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. WileyGoogle Scholar
  3. 3.
    Atwater HA, Polman A (2010) Nat Mater 9(3):205CrossRefGoogle Scholar
  4. 4.
    Anger P, Bharadwaj P, Novotny L (2006) Phys Rev Lett 96:113002CrossRefGoogle Scholar
  5. 5.
    Fort E, Grésillon S (2008) J Phys D: Appl Phys 41(1):013001CrossRefGoogle Scholar
  6. 6.
    Khlebtsov NG, Dykman LA (2010) Spectrosc. J Quant Spectrosc Radiat Transf 111(1):1Google Scholar
  7. 7.
    Fan M, Andrade GFS, Brolo AG (2011) Anal Chim Acta 693(1–2):7CrossRefGoogle Scholar
  8. 8.
    Guillot N, Lamy M, Lamy de la Chapelle M (2012) J Nanophotonics 6(1):064506Google Scholar
  9. 9.
    Oates TWH, Keller A, Facsko S, Mücklich A (2007) Plasmonics 2(2):47CrossRefGoogle Scholar
  10. 10.
    Toma A, Chiappe D, Massabò D, Boragno C, Buatier de Mongeot F (2008) Appl Phys Lett 93 (16):163104CrossRefGoogle Scholar
  11. 11.
    Cuccureddu F, Murphy S, Shvets IV, Porcu M, Zandbergen HW (2008) Nano Lett 8(10):3248CrossRefGoogle Scholar
  12. 12.
    Camelio S, Babonneau D, Lantiat D, Simonot L, Pailloux F (2009) Phys Rev B 80:155434CrossRefGoogle Scholar
  13. 13.
    Ranjan M, Facsko S (2012) Nanotechnology 23(48):485307CrossRefGoogle Scholar
  14. 14.
    Verre R, Fleischer K, Ualibek O, Shvets IV (2012) Appl Phys Lett 100:031102CrossRefGoogle Scholar
  15. 15.
    Ualibek O, Verre R, Bulfin B, Usov V, Fleischer K, McGilp JF, Shvets IV (2013) Nanoscale 5:4923CrossRefGoogle Scholar
  16. 16.
    Camelio S, Vandenhecke E, Rousselet S, Babonneau D (2014) Nanotechnology 25(3):035706CrossRefGoogle Scholar
  17. 17.
    Babonneau D, Camelio S, Simonot L, Pailloux F, Guérin P, Lamongie B, Lyon O (2011) EPL 93(2):26005CrossRefGoogle Scholar
  18. 18.
    Anghinolfi L, Moroni R, Mattera L, Canepa M, Bisio F (2011) J Phys Chem C 115(29):14036CrossRefGoogle Scholar
  19. 19.
    Belardini A, Larciprete MC, Centini M, Fazio E, Sibilia C, Chiappe D, Martella C, Toma A, Giordano M, Buatier de Mongeot F (2011) Phys Rev Lett 107:257401CrossRefGoogle Scholar
  20. 20.
    Khan SA, Avasthi DK, Agarwal DC, Singh UB, Kabiraj D (2011) Nanotechnology 22(23):235305CrossRefGoogle Scholar
  21. 21.
    Maidecchi G, Gonella G, Zaccaria RP, Moroni R, Anghinolfi L, Giglia A, Nannarone S, Mattera L, Dai HL, Canepa M, Bisio F (2013) ACS Nano 7(7):5834CrossRefGoogle Scholar
  22. 22.
    Gao C, Hu Y, Wang M, Chi M, Yin Y (2014) J Am Chem Soc 136(20):7474CrossRefGoogle Scholar
  23. 23.
    Besner S, Meunier M (2010) J Phys Chem C 114(23):10403CrossRefGoogle Scholar
  24. 24.
    Alissawi N, Zaporojtchenko V, Strunskus T, Kocabas I, Chakravadhanula V, Kienle L, Garbe-Schnberg D, Faupel F (2013) Gold Bull 46(1):3CrossRefGoogle Scholar
  25. 25.
    Sanchez-Ramirez J, Pal U, Nolasco-Hernandez L, Mendoza-Alvarez J, Pescador-Rojas J (2008) J Nanomaterials 2008. 620412Google Scholar
  26. 26.
    Kuladeep R, Jyothi L, Alee KS, Deepak KLN, Rao DN (2012) Opt Mater Express 2(2):161CrossRefGoogle Scholar
  27. 27.
    Cortie MB, McDonagh AM (2011) Chem Rev 111(6):3713CrossRefGoogle Scholar
  28. 28.
    Gaudry M, Lermé J, Cottancin E, Pellarin M, Vialle JL, Broyer M, Prével B, Treilleux M, Mélinon P (2001) Phys Rev B 64:085407CrossRefGoogle Scholar
  29. 29.
    Benten W, Nilius N, Ernst N, Freund HJ (2005) Phys Rev B 72:045403CrossRefGoogle Scholar
  30. 30.
    Gonella F, Cattaruzza E, Battaglin G, D’Acapito F, Sada C, Mazzoldi P, Maurizio C, Mattei G, Martorana A, Longo A, Zontone F (2001) J Non-Cryst Solids 280(1–3):241CrossRefGoogle Scholar
  31. 31.
    Roy RK, Mandal SK, Pal AK (2003) Eur Phys J B 33(1):109CrossRefGoogle Scholar
  32. 32.
    Sancho-Parramon J, Janicki V, Lonc̆arić M, Zorc H, Dubc̆ek P, Bernstorff S (2011) Appl Phys A 103(3):745CrossRefGoogle Scholar
  33. 33.
    Beyene HT, Chakravadhanula VSK, Hanisch C, Elbahri M, Strunskus T, Zaporojtchenko V, Kienle L, Faupel F (2010) J Mater Sci 45(21):5865CrossRefGoogle Scholar
  34. 34.
    Nishijima Y, Akiyama S (2012) Opt Mater Express 2(9):1226CrossRefGoogle Scholar
  35. 35.
    Link S, Wang ZL, El-Sayed MA (1999) J Phys Chem B 103(18):3529Google Scholar
  36. 36.
    Mulvaney P (1996) Langmuir 12(3):788CrossRefGoogle Scholar
  37. 37.
    Brauwers M, Brouers F (1976) Phys Status Solidi B 75(2):519CrossRefGoogle Scholar
  38. 38.
    Peña-Rodríguez O, Caro M, Rivera A, Olivares J, Perlado JM, Caro A (2014) Opt Mater Express 4(2):403CrossRefGoogle Scholar
  39. 39.
    Rivory J (1977) Phys Rev B 15:3119CrossRefGoogle Scholar
  40. 40.
    Yang HU, D’Archangel J, Sundheimer ML, Tucker E, Boreman GD, Raschke MB (2015) Phys Rev B 235137:91Google Scholar
  41. 41.
    Jiang Y, Pillai S, Green MA (2015) Opt Express 23(3):2133CrossRefGoogle Scholar
  42. 42.
    Yazidi S, Fafin A, Rousselet S, Pailloux F, Camelio S, Babonneau D (2015) Phys Status Solidi C 12(12):1344CrossRefGoogle Scholar
  43. 43.
    Johnson PB, Christy RW (1972) Phys Rev B 6:4370CrossRefGoogle Scholar
  44. 44.
    Tinguely JC, Sow I, Leiner C, Grand J, Hohenau A, Felidj N, Aubard J, Krenn J (2011) BioNanoScience 1(4):128CrossRefGoogle Scholar
  45. 45.
    Rioux D, Vallières S, Besner S, Muñoz P, Mazur E, Meunier M (2014) Adv Opt Mater 2 (2):176CrossRefGoogle Scholar
  46. 46.
    Banhart J (1999) Phys Rev Lett 82:2139CrossRefGoogle Scholar
  47. 47.
    Rajendra R, Bhatia P, Justin A, Sharma S, Ballav N (2015) J Phys Chem C 119(10):5604CrossRefGoogle Scholar
  48. 48.
  49. 49.
    Myroshnychenko V, Rodriguez-Fernandez J, Pastoriza-Santos I, Funston AM, Novo C, Mulvaney P, Liz-Marzan LM, Garcia de Abajo FJ (2008) Chem Soc Rev 37:1792CrossRefGoogle Scholar
  50. 50.
    Berenger JP (1994) J Comput Phys 114(2):185CrossRefGoogle Scholar
  51. 51.
    Rodriguez-Gonzalez B, Sanchez-Iglesias A, Giersig M, Liz-Marzan LM (2004) Farad Discuss 125:133CrossRefGoogle Scholar
  52. 52.
    Verbruggen SW, Keulemans M, Martens JA, Lenaerts S (2013) J Phys Chem C 117(37):19142CrossRefGoogle Scholar
  53. 53.
    Jain PK, Huang W, El-Sayed MA (2007) Nano Lett 7(7):2080CrossRefGoogle Scholar
  54. 54.
    Jain PK, El-Sayed MA (2008) J Phys Chem C 112(13):4954Google Scholar
  55. 55.
    Tabor C, Van Haute D, El-Sayed MA (2009) ACS Nano 3(11):3670CrossRefGoogle Scholar
  56. 56.
    Hao E, Schatz G (2004) J Chem Phys 120(1):357CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Alexandre Fafin
    • 1
    Email author
  • Senda Yazidi
    • 1
  • Sophie Camelio
    • 1
  • David Babonneau
    • 1
  1. 1.Institut Pprime, Département Physique et Mécanique des MatériauxUPR 3346 CNRS, Université de PoitiersFuturoscope Chasseneuil CedexFrance

Personalised recommendations