, Volume 10, Issue 6, pp 1657–1662 | Cite as

Extraordinary Optical Transmission Exhibited by Surface Plasmon Polaritons in a Double-Layer Wire Grid Polarizer

  • Atsushi Motogaito
  • Yuuta Morishita
  • Hideto Miyake
  • Kazumasa Hiramatsu


We fabricate a double-layer wire grid polarizer (WGP) and perform optical characterization to clarify the relationship between the structural and polarization characteristics. For normal incidence, the fabricated double-layer WGP exhibits an extinction ratio of 30.4 dB for a period of 400 nm. The transverse magnetic transmittance peak angle is found to vary with the period of the WGP. The peak shift can be explained on the basis of the extraordinary optical transmittance phenomena exhibited by the surface plasmon polaritons (SPPs) of metal slit structures according to the dispersion curve of the SPP. From the simulation of rigorous coupled-wave analysis, it is considered that the incident light passes through the resist layer, followed by the excitation of SPPs at the interface between the resist and Au. Subsequently, the SPPs combine with the transmitted light in the glass substrate, leading to strong transmitted light with transverse magnetic polarization. Therefore, we demonstrate the extraordinary optical transmittance phenomena exhibited by the SPPs by both experiment and simulation.


Wire grid polarizer Polarization property Surface plasmon polariton Extraordinary optical transmittance phenomena 


  1. 1.
    Bird GR, Parrish M Jr (1960) The wire grid as a near-infrared polarizer. J Opt Soc Am 50:886–891. doi:10.1364/JOSA.50.000886 CrossRefGoogle Scholar
  2. 2.
    Hass M, O’Hara M (1965) Sheet infrared transmission polarizers. Appl Opt 4:1027–1031. doi:10.1364/AO.4.001027 CrossRefGoogle Scholar
  3. 3.
    Auton JP (1967) Infrared transmission polarizers by photolithography. Appl Opt 6:1023–1027. doi:10.1364/AO.6.001023 CrossRefGoogle Scholar
  4. 4.
    Stenkamp B, Abraham M, Ehrfeld W, Knapek E, Hintermaier E, Gale MT, Morf R (1994) Grid polarizer for the visible spectral region. Proc SPIE 2213:288–296. doi:10.1117/12.180973 CrossRefGoogle Scholar
  5. 5.
    Lochbihler H, Depine R (1993) Highly conducting wire gratings in the resonance region. Appl Opt 32:3459–3465. doi:10.1364/AO.32.003459 CrossRefGoogle Scholar
  6. 6.
    Tamada H, Doumuki T, Yamaguchi T, Matsumoto S (1997) Al wire-grid polarizer using the s-polarization resonance effect at the 0.8-mm-wavelength band. Opt Lett 22:419–421. doi:10.1364/OL.22.000419 CrossRefGoogle Scholar
  7. 7.
    Yu XJ, Kwok HS (2003) Optical wire-grid polarizers at oblique angles of incidence. J Appl Phys 93:4407–4412. doi:10.1063/1.1559937 CrossRefGoogle Scholar
  8. 8.
    Xu M, Urbach HP, de Boer DKG, Cornelissen HJ (2005) Wire-grid diffraction gratings used as polarizing beam splitter for visible light and applied in liquid crystal on silicon. Opt Express 13:2303–2320. doi:10.1364/OPEX.13.002303 CrossRefGoogle Scholar
  9. 9.
    Wang JJ, Walters F, Liu X, Sciortino P, Deng X (2007) High-performance, large area, deep ultraviolet to infrared polarizers based on 40 nm line/78 nm space nanowire grids. Appl Phys Lett 90:061104. doi:10.1063/1.2437731 CrossRefGoogle Scholar
  10. 10.
    Hsu SY, Lee KL, Lin EH, Lee MC, Wei PK (2009) Giant birefringence induced by plasmonic nanoslit arrays. Appl Phys Lett 95:013105. doi:10.1063/1.3167772 CrossRefGoogle Scholar
  11. 11.
    Beresna M, Gecevičius M, Kazansky PG, Gertus T (2011) Radially polarized optical vortex converter created by femtosecond laser nanostructuring of glass. Appl Phys Lett 98:201101. doi:10.1063/1.3590716 CrossRefGoogle Scholar
  12. 12.
    Iwami K, Ishii M, Kuramochi Y, Ida K, Umeda N (2012) Ultrasmall radial polarizer array based on patterned plasmonic nanoslits. Appl Phys Lett 101:161119. doi:10.1063/1.4761943 CrossRefGoogle Scholar
  13. 13.
    Ishii M, Iwami K, Umeda N (2015) An Au nanofin array for high efficiency plasmonic optical retarders at visible wavelengths. Appl Phys Lett 106:021115. doi:10.1063/1.4905369 CrossRefGoogle Scholar
  14. 14.
    Djalalian-Assl A, Cadusch AA, Teo ZQ, Davis TJ, Roberts A (2015) Surface plasmon wave plates. Appl Phys Lett 106:041104. doi:10.1063/1.4906596 CrossRefGoogle Scholar
  15. 15.
    Yu Z, Deshpande P, Wu W, Wang J, Chou SY (2000) Reflective polarizer based on a stacked double-layer subwavelength metal grating structure fabricated using nanoimprint lithography. Appl Phys Lett 77:927–929. doi:10.1063/1.1288674 CrossRefGoogle Scholar
  16. 16.
    Ekinci Y, Solak HH, David C, Sigg H (2006) Bilayer Al wire-grids as broadband and high performance polarizers. Opt Express 14:2323–2334. doi:10.1364/OE.14.002323 CrossRefGoogle Scholar
  17. 17.
    Ye Z, Peng Y, Zhai T, Zhou Y, Liu D (2011) Surface plasmon-mediated transmission in double-layer metallic grating polarizers. J Opt Soc Am B 28:502–507. doi:10.1364/JOSAB.28.000502 CrossRefGoogle Scholar
  18. 18.
    Ye Z, Zheng J, Sun S, Chen S, Liu D (2013) Compact color filter and polarizer of bilayer metallic nanowire grating based on surface plasmon resonances. Plasmonics 8:555–559. doi:10.1007/s11468-012-9433-6 Google Scholar
  19. 19.
    Ma Y, Sun N, Zhang R, Guo L, She Y, Zheng J, Ye Z (2014) Integrated color filter and polarizer based on two-dimensional superimposed nanowire arrays. J Appl Phys 116:044314. doi:10.1063/1.4891804 CrossRefGoogle Scholar
  20. 20.
    Ebbesen TW, Lezec HJ, Ghaemi HF, Thio T, Wolff PA (1998) Extraordinary optical transmission through sub-wavelength hole arrays. Nature 391:667–669. doi:10.1038/35570 CrossRefGoogle Scholar
  21. 21.
    Klein Koerkamp KJ, Enoch S, Segerink FB, van Hulst NF, Kuipers L (2004) Strong influence of hole shape on extraordinary transmission through periodic arrays of subwavelength holes. Phys Rev Lett 92:183901. doi:10.1103/PhysRevLett.92.183901 CrossRefGoogle Scholar
  22. 22.
    Schouten HF, Kuzmin N, Dubois G, Visser TG, Gbur G, Alkemade PFA, Blok H, ‘t Hooft GW, Lenstra D, Eliel G (2005) Plasmon-assisted two-slit transmission: Young’s experiment revisited. Phys Rev Lett 94:053901. doi:10.1103/PhysRevLett.94.053901 CrossRefGoogle Scholar
  23. 23.
    Motogaito A, Hiramatsu K (2013) Fabrication of binary diffractive lenses and the application to LED lighting for controlling luminosity distribution. Opt Photon J 3:67–73. doi:10.4236/opj.2013.31011 CrossRefGoogle Scholar
  24. 24.
    Okamoto K, Kawakami Y (1999) High-efficiency InGaN/GaN light emitters based on nanophotonics and plasmonics. IEEE J Sel Top Quantum Electron 15:1199–1209. doi:10.1109/JSTQE.2009.2021530 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Graduate School of EngineeringMie UniversityTsuJapan
  2. 2.The Center of Ultimate Technology on nano-ElectronicsMie UniversityTsuJapan

Personalised recommendations