Advertisement

Plasmonics

, Volume 10, Issue 5, pp 1173–1183 | Cite as

Scattering of an Obliquely Incident Surface Plasmon Polariton from Sub-Micron Metal Grooves and Ridges

  • J. Polanco
  • R. M. Fitzgerald
  • A. A. Maradudin
Article

Abstract

The reduced Rayleigh equation for the scattering of a surface plasmon polariton incident non-normally on a one-dimensional ridge or groove on an otherwise planar metal surface is solved by a purely numerical approach. The solution is used to calculate the transmission, reflection, and out-of-plane scattering coefficients of the surface plasmon polariton. The angular dependence of the out-of-plane scattering is found to have a conical nature.

Keywords

Surface plasmon Polariton 

References

  1. 1.
    Sánchez-Gil JA (1998) Surface defect scattering of surface plasmon polaritons: mirrors and light emitters. Appl Phys Lett 73:3509–3511CrossRefGoogle Scholar
  2. 2.
    Sánchez-Gil JA, Maradudin AA (1999) Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 60:8359–8367CrossRefGoogle Scholar
  3. 3.
    Sánchez-Gil JA, Maradudin AA (2003) Resonant scattering of surface plasmon polariton pulses by nanoscale metal defects. Opt Lett 28:2255–2257CrossRefGoogle Scholar
  4. 4.
    Sánchez-Gil JA, Maradudin AA (2004) Dynamic near-field calculations of surface-plasmon polariton pulses resonantly scattered at sub-micron metal defects. Opt Express 12:883–894CrossRefGoogle Scholar
  5. 5.
    Sánchez-Gil JA, Maradudin AA (2005) Surface plasmon polariton scattering from a finite array of nano grooves/ridges: efficient mirrors. Appl Phys Lett 86(1–3):251106CrossRefGoogle Scholar
  6. 6.
    Maradudin AA (1994) An impedance boundary condition for a rough surface, pp. 33–45. Topics in Condensed Matter Physics, ed. M.P. Das. Nova Science Publishers, New YorkGoogle Scholar
  7. 7.
    Nikitin AY, López-Tejeira F, Martín-Moreno L (2007) Scattering of surface plasmon polaritons by one-dimensional inhomogeneities. Phys Rev B75(1–8):035–129Google Scholar
  8. 8.
    Leskova TA, Maradudin AAE, García-Guerrero E, Méndez ER (2010) The scattering of surface plasmon polaritons by nanoscale surface defects. Fiz Nizkh Temperatur 36:1022–1029Google Scholar
  9. 9.
    Chremmos I (2010) Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities. J Opt Soc Am A27:85–94CrossRefGoogle Scholar
  10. 10.
    Brucoli G, Martín-Moreno L (2011) Comparative study of surface plasmon scattering by shallow ridges and grooves. Phys Rev B 83(1–11):045–422Google Scholar
  11. 11.
    Brucoli G, Martín-Moreno L (2011) Effect of defect depth on surface plasmon scattering by subwavelength surface defects. Phys Rev B 83(1–10):075–433Google Scholar
  12. 12.
    Kuttge MF, García de Abajo J, Polman A (2009) How grooves reflect and confine surface plasmon polaritons. Opt Express 17:10385–10392CrossRefGoogle Scholar
  13. 13.
    Polanco J, Fitzgerald RM, Maradudin AA (2013) Scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 87:155417–155430CrossRefGoogle Scholar
  14. 14.
    Nikitin AY, Martín-Moreno L (2007) Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects. Phys Rev B 75(1–4):081–405Google Scholar
  15. 15.
    Petit R, Cadilhac M (1996) Sur la diffraction d’une onde plane par un réseau infiniment conducteur. C R Acad Sci B 262:468–471Google Scholar
  16. 16.
    Millar RF (1969) On the Rayleigh assumption in scattering by a periodic surface. Proc Camb Philos Soc 65:773–791CrossRefGoogle Scholar
  17. 17.
    Hill NR, Celli V (1978) Limits of convergence of the Rayleigh method for surface scattering. Phys Rev B 17:2478–2481CrossRefGoogle Scholar
  18. 18.
    Van den Berg PM, Fokkema JT (1979) The Rayleigh hypothesis in the theory of reflection by a grating. J Opt Soc Am 69:27–31CrossRefGoogle Scholar
  19. 19.
    Van den Berg PM, Fokkema JT (1980) The Rayleigh hypothesis in the theory of diffraction by a perturbation in a plane surface. Radio Sci 15:723–732CrossRefGoogle Scholar
  20. 20.
    Schlup WA (1984) On the convergence of the Rayleigh ansatz for hard-wall scattering on arbitrary periodic surface profiles. J Phys A: Math Gen 17:2607–2619CrossRefGoogle Scholar
  21. 21.
    DeSanto JA (1981) Scattering from a perfectly reflecting arbitrary periodic surface: an exact theory. Radio Sci 16:1315–1326CrossRefGoogle Scholar
  22. 22.
    Paulick TC (1990) Applicability of the Rayleigh hypothesis to real materials. Phys Rev B 42:2801–2824CrossRefGoogle Scholar
  23. 23.
    Millar RF (1973) The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers. Radio Sci 8:785–796CrossRefGoogle Scholar
  24. 24.
    Rayleigh L (1896) The theory of sound, vol II, 2nd. MacMillan, London, pp 89, 297–311Google Scholar
  25. 25.
    Brown GC, Celli V, Haller M, Marvin A (1984) Vector theory of light scattering from a rough surface: Unitary and reciprocal expansions. Surf Sci 136:381–397CrossRefGoogle Scholar
  26. 26.
    Maradudin AA, Mills DL (1976) The attenuation of Rayleigh surface waves by surface roughness. Ann Phys (N. Y.) 100:262–309. Appendix DCrossRefGoogle Scholar
  27. 27.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, Cambridge, UK, pp 109–110Google Scholar
  28. 28.
    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes, Cambridge University Press, Cambridge, UK. Chapter 2Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. Polanco
    • 1
  • R. M. Fitzgerald
    • 2
  • A. A. Maradudin
    • 3
  1. 1.Department of MathematicsUniversity of TexasEl PasoUSA
  2. 2.Department of PhysicsUniversity of TexasEl PasoUSA
  3. 3.Department of Physics and AstronomyUniversity of CaliforniaIrvineUSA

Personalised recommendations