Advertisement

Scattering of an Obliquely Incident Surface Plasmon Polariton from Sub-Micron Metal Grooves and Ridges

  • 184 Accesses

  • 1 Citations

Abstract

The reduced Rayleigh equation for the scattering of a surface plasmon polariton incident non-normally on a one-dimensional ridge or groove on an otherwise planar metal surface is solved by a purely numerical approach. The solution is used to calculate the transmission, reflection, and out-of-plane scattering coefficients of the surface plasmon polariton. The angular dependence of the out-of-plane scattering is found to have a conical nature.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. 1.

    Sánchez-Gil JA (1998) Surface defect scattering of surface plasmon polaritons: mirrors and light emitters. Appl Phys Lett 73:3509–3511

  2. 2.

    Sánchez-Gil JA, Maradudin AA (1999) Near-field and far-field scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 60:8359–8367

  3. 3.

    Sánchez-Gil JA, Maradudin AA (2003) Resonant scattering of surface plasmon polariton pulses by nanoscale metal defects. Opt Lett 28:2255–2257

  4. 4.

    Sánchez-Gil JA, Maradudin AA (2004) Dynamic near-field calculations of surface-plasmon polariton pulses resonantly scattered at sub-micron metal defects. Opt Express 12:883–894

  5. 5.

    Sánchez-Gil JA, Maradudin AA (2005) Surface plasmon polariton scattering from a finite array of nano grooves/ridges: efficient mirrors. Appl Phys Lett 86(1–3):251106

  6. 6.

    Maradudin AA (1994) An impedance boundary condition for a rough surface, pp. 33–45. Topics in Condensed Matter Physics, ed. M.P. Das. Nova Science Publishers, New York

  7. 7.

    Nikitin AY, López-Tejeira F, Martín-Moreno L (2007) Scattering of surface plasmon polaritons by one-dimensional inhomogeneities. Phys Rev B75(1–8):035–129

  8. 8.

    Leskova TA, Maradudin AAE, García-Guerrero E, Méndez ER (2010) The scattering of surface plasmon polaritons by nanoscale surface defects. Fiz Nizkh Temperatur 36:1022–1029

  9. 9.

    Chremmos I (2010) Magnetic field integral equation analysis of surface plasmon scattering by rectangular dielectric channel discontinuities. J Opt Soc Am A27:85–94

  10. 10.

    Brucoli G, Martín-Moreno L (2011) Comparative study of surface plasmon scattering by shallow ridges and grooves. Phys Rev B 83(1–11):045–422

  11. 11.

    Brucoli G, Martín-Moreno L (2011) Effect of defect depth on surface plasmon scattering by subwavelength surface defects. Phys Rev B 83(1–10):075–433

  12. 12.

    Kuttge MF, García de Abajo J, Polman A (2009) How grooves reflect and confine surface plasmon polaritons. Opt Express 17:10385–10392

  13. 13.

    Polanco J, Fitzgerald RM, Maradudin AA (2013) Scattering of surface plasmon polaritons by one-dimensional surface defects. Phys Rev B 87:155417–155430

  14. 14.

    Nikitin AY, Martín-Moreno L (2007) Scattering coefficients of surface plasmon polaritons impinging at oblique incidence onto one-dimensional surface relief defects. Phys Rev B 75(1–4):081–405

  15. 15.

    Petit R, Cadilhac M (1996) Sur la diffraction d’une onde plane par un réseau infiniment conducteur. C R Acad Sci B 262:468–471

  16. 16.

    Millar RF (1969) On the Rayleigh assumption in scattering by a periodic surface. Proc Camb Philos Soc 65:773–791

  17. 17.

    Hill NR, Celli V (1978) Limits of convergence of the Rayleigh method for surface scattering. Phys Rev B 17:2478–2481

  18. 18.

    Van den Berg PM, Fokkema JT (1979) The Rayleigh hypothesis in the theory of reflection by a grating. J Opt Soc Am 69:27–31

  19. 19.

    Van den Berg PM, Fokkema JT (1980) The Rayleigh hypothesis in the theory of diffraction by a perturbation in a plane surface. Radio Sci 15:723–732

  20. 20.

    Schlup WA (1984) On the convergence of the Rayleigh ansatz for hard-wall scattering on arbitrary periodic surface profiles. J Phys A: Math Gen 17:2607–2619

  21. 21.

    DeSanto JA (1981) Scattering from a perfectly reflecting arbitrary periodic surface: an exact theory. Radio Sci 16:1315–1326

  22. 22.

    Paulick TC (1990) Applicability of the Rayleigh hypothesis to real materials. Phys Rev B 42:2801–2824

  23. 23.

    Millar RF (1973) The Rayleigh hypothesis and a related least-squares solution to scattering problems for periodic surfaces and other scatterers. Radio Sci 8:785–796

  24. 24.

    Rayleigh L (1896) The theory of sound, vol II, 2nd. MacMillan, London, pp 89, 297–311

  25. 25.

    Brown GC, Celli V, Haller M, Marvin A (1984) Vector theory of light scattering from a rough surface: Unitary and reciprocal expansions. Surf Sci 136:381–397

  26. 26.

    Maradudin AA, Mills DL (1976) The attenuation of Rayleigh surface waves by surface roughness. Ann Phys (N. Y.) 100:262–309. Appendix D

  27. 27.

    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes. Cambridge University Press, Cambridge, UK, pp 109–110

  28. 28.

    Press WH, Teukolsky SA, Vetterling WT, Flannery BP (1992) Numerical recipes, Cambridge University Press, Cambridge, UK. Chapter 2

Download references

Author information

Correspondence to R. M. Fitzgerald.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Polanco, J., Fitzgerald, R.M. & Maradudin, A.A. Scattering of an Obliquely Incident Surface Plasmon Polariton from Sub-Micron Metal Grooves and Ridges. Plasmonics 10, 1173–1183 (2015). https://doi.org/10.1007/s11468-015-9913-6

Download citation

Keywords

  • Surface plasmon
  • Polariton