Advertisement

Plasmonics

, Volume 10, Issue 4, pp 941–947 | Cite as

Quantum Mechanical Model for Plasmon Excitations in Nanostructures

  • J. A. García GallardoEmail author
  • J. L. Gervasoni
Article

Abstract

In this work, we develop a theoretical quantum mechanical model for describing the plasmon excitations in nanostructures. This model is based on the electronic density according to the Density Functional Theory (DFT). We derive an expression for finding an approximation to the dispersion relation in a nanostructure from the complete Hamiltonian of the system. We apply this expression to an aluminium nanoring showing how great, and not negligible, the ionic-interaction term is.

Keywords

Plasmon Nanostructures Nanoring Hamiltonian formalism 

Notes

Acknowledgments

The authors want to thank Dr. J. Fuhr for its kind assistance with Quantum Espresso and to Consejo Nacional de Investigaciones Cientí ficas y Técnicas (CONICET) for the awarded grants.

References

  1. 1.
    Johnson J, Choi H (2002) Nat Mater 1:106CrossRefGoogle Scholar
  2. 2.
    Falk AL, Koppens FHL, Yu CL, Kang K, Snapp ND, Akimov AV, Jo MH, Lukin MD, Park H (2009) Nat Phys 5:475CrossRefGoogle Scholar
  3. 3.
    Li C, Ji W, Chen J, Tao Z (2007) Chem Mater 19:5812CrossRefGoogle Scholar
  4. 4.
    Fei Z, Rodin AS, Gannett W, Dai S, Regan W, Wagner M, Liu MK, McLeod AS, Dominguez G, Thiemens M, Castro Neto AH, Keilmann F, Zettl A, Hillenbrand R, Fogler MM, Basov DN (2013) Nat Nanotechnol 8:821–825CrossRefGoogle Scholar
  5. 5.
    Alonso-Gonzlez P, Nikitin AY, Golmar F, Centeno A, Pesquera A, Vélez S, Chen J, Navickaite G, Koppens F, Zurutuza A, Casanova F, Hueso LE, Hillenbrand R (2014) Science 344:1369–1373CrossRefGoogle Scholar
  6. 6.
    de Abajo G (2010) Optical excitations in electron microscopy. Rev Mod Phys 82Google Scholar
  7. 7.
    Zhang YF, Liao LS, Chan WH, Lee ST, Sammynaiken R, Sham TK (2000) Phys Rev B 61:8298CrossRefGoogle Scholar
  8. 8.
    Compagnini G, Patanè G, Sinatra M, Puglisi O, Nicolosi V, Mihailovic D, Vengust D, Strle J (2010) J Phys Chem Lett 1:393CrossRefGoogle Scholar
  9. 9.
    Hembree GG, Vernables JA (1992) Ultramicroscopy 47:109CrossRefGoogle Scholar
  10. 10.
    Pardee WJ, Mahan GD, Eastman DE, Ley L, McFeely FR (1975) Phys Rev B 11:3614CrossRefGoogle Scholar
  11. 11.
    Szunerits S, Coffinie Y, Galopin E, Brenner J, Boukherroub R (2010) Electrochem Comm 12:438CrossRefGoogle Scholar
  12. 12.
    Sohn Y, Leung KT, Radi A, Pradhan D (2010) ACS Nano 4:1553CrossRefGoogle Scholar
  13. 13.
    Silly MG, Sirotti F, Reiss P, Renault O, Huang K, Demadrille R (2010) ACS Nano 4:4799CrossRefGoogle Scholar
  14. 14.
    Cheng M, Hemminger C, Penner R, Yang F, Kung S (2010) ACS Nano 4:5233CrossRefGoogle Scholar
  15. 15.
    Levendorf M, Cai W, Ju S-Y, Edgeworth J, Li X, Magnuson CW, Velamakanni A, Piner RD, Kang J, Park J, Chen S, Brown L, Ruoff RS (2011) ACS Nano 5:1321CrossRefGoogle Scholar
  16. 16.
    Gervasoni JL, Arista NR (2003) Phys Rev B 235302:68Google Scholar
  17. 17.
    Gervasoni JL (2009) Nucl Ins and Meth in Phys R B 267:235CrossRefGoogle Scholar
  18. 18.
    García Gallardo JA, Gervasoni JL, Kövér L (2010) Vacuum 84:258CrossRefGoogle Scholar
  19. 19.
    García Gallardo JA, Gervasoni JL, Kövér L (2012) J Nanosci Nanotec 12(12):9271–9276CrossRefGoogle Scholar
  20. 20.
    García Gallardo JA, Gervasoni JL, Kövér L (2014) Vacuum 107:316–319CrossRefGoogle Scholar
  21. 21.
    Johnson DL (1975) Rev Phys B 12:3428CrossRefGoogle Scholar
  22. 22.
    Aspnes DE (1982) Am J Phys 50:704CrossRefGoogle Scholar
  23. 23.
    Mahan GD (2000) Many-particle physics, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  24. 24.
    Singwi KS, Tosi MP, Land RH, Sjölander A (1975) Phys Rev 12:3428CrossRefGoogle Scholar
  25. 25.
    Pitarke JM, Silkin VM, Chulkov EV, Echenique PM (2007) Rep Prog Phys 70:1CrossRefGoogle Scholar
  26. 26.
    Hu GY, O’Connell RF (1989) Phys Rev B 40:3601Google Scholar
  27. 27.
    Hu GY, O’Connell RF (1987) Phys Rev B 36:5798CrossRefGoogle Scholar
  28. 28.
    Adler SL (1962) Phys Rev 126:413CrossRefGoogle Scholar
  29. 29.
    Wiser N (1963) Phys Rev 129:62CrossRefGoogle Scholar
  30. 30.
    Pick RM (1970) Adv Phys 19:269CrossRefGoogle Scholar
  31. 31.
    Kroto H, Heath JR, O’Brien S, Curl R, Smalley R (1985) Nature 318:162—163CrossRefGoogle Scholar
  32. 32.
    Rivacoba A, García de Abajo FJ (2003) Phys Rev B 085414:67Google Scholar
  33. 33.
    Song YH, Zhao D, Wang YN (2008) Phys Rev A 78(01):2901CrossRefGoogle Scholar
  34. 34.
    Hohenberg P, Kohn W (1964) Phys Rev 136:B864CrossRefGoogle Scholar
  35. 35.
    Kohn W, Sham LJ (1965) Phys Rev 140:A1133CrossRefGoogle Scholar
  36. 36.
    Echenique PM, Nieminen RM, Ritchie RH (1981) Solid State Comm 37:779CrossRefGoogle Scholar
  37. 37.
    Gras-Martí A, Urbassek HM, Arista NR, Flores F (1990) Interaction of charged particles with solids and surfaces. NATO ASI SeriesGoogle Scholar
  38. 38.
    Ferrel TL, Ritchie RH (1977) Phy Rev B 16:115CrossRefGoogle Scholar
  39. 39.
    Echenique PM, García de Abajo FJ, Ponce VH, Uranga ME (1995) Nucl Instr and Meth B 96:583CrossRefGoogle Scholar
  40. 40.
    Kittel C (1963) Quantum theory of solids. Wiley, New YorkGoogle Scholar
  41. 41.
    Pines D (1963) Elementary excitations in solids. W. A. Benjamin, New YorkGoogle Scholar
  42. 42.
    Sakurai JJ (1994) Modern quantum mechanics. Addison-Wesley, ReadingGoogle Scholar
  43. 43.
    Merzbacher E (1998) Quantum mechanics, 3rd edn. Wiley, New YorkGoogle Scholar
  44. 44.
    Hassan NM, Mkhitaryan VV, Mishchenko EG (2012) Phys Rev B 125411:85Google Scholar
  45. 45.
    Nagao T, Hildebrandt T, Henzler M, Hasegawa S (2001) Phys Rev Letters 86:5747CrossRefGoogle Scholar
  46. 46.
    Nagao T, Yaginuma S, Inaoka T, Sakurai T (2006) Phys Rev Letters 116802:97Google Scholar
  47. 47.
    Bagci VMK, Gülseren O, Yildirim T, Gedik Z, Ciraci S (2002) Phys Rev B 045409:66Google Scholar
  48. 48.
    Gelbart WM, Heath JR, Vossmeyer T, Chung S-W (1998) Adv Mater 10:351CrossRefGoogle Scholar
  49. 49.
    Yang R, Lin Z, Xiang W, Kong Y, Ding Y (2004) Science 303:1348CrossRefGoogle Scholar
  50. 50.
    Yuan HJ, Yan XQ, Liu DF, Gao Y, Zhou ZP, Song L, Liu LF, Zhao XW, Dou XY, Zhou WY, Wang G, Wang JX, Xie SS (2004) Sol State Comm 131:435CrossRefGoogle Scholar
  51. 51.
    Zheng JC, Wang H-Q, Wee ATS, Huan CH (2002) Int J of Nanosci 1:159CrossRefGoogle Scholar
  52. 52.
    Ritchie RH, Wilems RE (1969) Phys Rev 178:372CrossRefGoogle Scholar
  53. 53.
    Giannozzi P, Baroni S, Bonini N, Calandra M, Car R, Cavazzoni C, Ceresoli D, Chiarotti GL, Cococcioni M, Dabo I, Dal Corso A, de Gironcoli S, Fabris S, Fratesi G, Gebauer R, Gerstmann U, Gougoussis C, Kokalj A, Lazzeri M, Martin-Samos L, Marzari N, Mauri F, Mazzarello R, Paolini S, Pasquarello A, Paulatto L, Sbraccia C, Scandolo SG, Seitsonen AP, Smogunov A, Umari P, Wentzcovitch RM (2009) J Phys: Condens Matter 395502:21Google Scholar
  54. 54.
    Landau RH, Paéz MJ, Bordeianu CC (2012) A survey of computational physics. Princeton University Press, PrincetonGoogle Scholar
  55. 55.
    Pastor-Abia L, Caturla MJ, San Fabián E, Chiappe G, Louis E (2008) Phys Rev B 153410:78Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Laboratorio TANDARCentro Atómico Constituyentes (CNEA)San MartinBuenos Aires
  2. 2.Instituto BalseiroCentro Atómico Bariloche (CNEA)San Carlos de BarilocheArgentina

Personalised recommendations