Advertisement

Plasmonics

, Volume 10, Issue 4, pp 911–918 | Cite as

Nanoscale Control of Temperature Distribution Using a Plasmonic Trimer

  • Zuwen Liu
  • Qiang Li
  • Weichun Zhang
  • Yuanqing Yang
  • Min Qiu
Article

Abstract

A plasmonic trimer composed of three closely packed identical gold nanospheres for manipulating nanoscale temperature distribution is proposed. It is shown that heat can be unevenly distributed among the three particles, creating a high temperature gradient in the nanoscale space despite the strong thermalization effect. Moreover, the difference in temperature increment among the particles is sensitive to the polarization of incident light and can be continuously tuned. The dependence of the achievable temperature difference on the trimer parameters is also investigated. The ability of nanoscale selective heating provides a possible way of remotely manipulating the nanoscale thermally induced physical or chemical processes with unprecedented spatial precision.

Keywords

Plasmonic trimer Photothermal effect Temperature distribution 

Notes

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61275030, 61205030, 61235007, and 61425023), Qianjiang River Fellow Fund of Zhejiang Province, the Scientific Research Foundation for the Returned Overseas Chinese Scholars from the State Education Ministry, the Opened Fund of State Key Laboratory of Advanced Optical Communication Systems and Networks, Doctoral Fund of Ministry of Education of China (Grant No. 20120101120128), Zhejiang University K.P. Chao’s High Technology Development Foundation, the Swedish Research Council (VR), and VR’s Linnaeus center in Advanced Optics and Photonics (ADOPT).

References

  1. 1.
    Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1:84–90CrossRefGoogle Scholar
  2. 2.
    Carlson MT, Green AJ, Richardson HH (2012) Superheating water by CW excitation of gold nanodots. Nano Lett 12:1534–1537CrossRefGoogle Scholar
  3. 3.
    Li Q, Zhang W, Zhao H, Qiu M (2013) Two-Dimensional analysis photothermal properties in nanoscale plasmonic waveguides for optical interconnect. J Lightwave Technol 31:4051–4056CrossRefGoogle Scholar
  4. 4.
    Li Q, Zhang W, Zhao D, Qiu M (2014) Photothermal enhancement in Core-Shell structured plasmonic nanoparticles. Plasmonics 9:623–630CrossRefGoogle Scholar
  5. 5.
    Bagley AF, Hill S, Rogers GS, Bhatia SN (2013) Plasmonic photothermal heating of intraperitoneal tumors through the use of an implanted near-infrared source. ACS Nano 7:8089–8097CrossRefGoogle Scholar
  6. 6.
    Stipe BC, Strand TC, Poon CC, Balamane H, Boone TD, Katine JA, Li J, Rawat V, Nemoto H, Hirotsune A, Hellwig O, Ruiz R, Dobisz E, Kercher DS, Robertson N, Albrecht TR, Terris BD (2010) Magnetic recording at 1.5 Pb m−2 using an integrated plasmonic antenna. Nat Photonics 4:484–488CrossRefGoogle Scholar
  7. 7.
    Baffou G, Bon P, Savatier J, Polleux J, Zhu M, Merlin M, Rigneault HE, Monneret S (2012) Thermal imaging of nanostructures by quantitative optical phase analysis. ACS Nano 6:2452–2458CrossRefGoogle Scholar
  8. 8.
    Baffou G, Girard C, Quidant R (2010) Mapping heat origin in plasmonic structures. Phys Rev Lett 104:136805CrossRefGoogle Scholar
  9. 9.
    Kang T, Hong S, Choi Y, Lee LP (2010) The effect of thermal gradients in SERS spectroscopy. Small 6:2649–2652CrossRefGoogle Scholar
  10. 10.
    Roxworthy BJ, Bhuiya AM, Vanka SP, Toussaint KC (2014) Understanding and controlling plasmon-induced convection. Nat. Commun 5Google Scholar
  11. 11.
    Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater 10:911–921CrossRefGoogle Scholar
  12. 12.
    Baffou G, Quidant R (2014) Nanoplasmonics for chemistry. Chem Soc Rev 43:3898–3907CrossRefGoogle Scholar
  13. 13.
    Chen X, Chen Y, Yan M, Qiu M (2012) Nanosecond photothermal effects in plasmonic nanostructures. ACS Nano 6:2550–2557CrossRefGoogle Scholar
  14. 14.
    Chen X, Chen Y, Dai J, Yan M, Zhao D, Li Q, Qiu M (2014) Ordered Au nanocrystals on a substrate formed by light-induced rapid annealing. Nanoscale 6:1756CrossRefGoogle Scholar
  15. 15.
    Virk M, Xiong K, Svedendahl M, Käll M, Dahlin AB (2014) A thermal plasmonic sensor platform: resistive heating of nanohole arrays. Nano Lett 14:3544–3549CrossRefGoogle Scholar
  16. 16.
    Zhang W, Li Q, Qiu M (2013) A plasmon ruler based on nanoscale photothermal effect. Opt Express 21:172–181CrossRefGoogle Scholar
  17. 17.
    Baffou G, Quidant R, García De Abajo FJ (2010) Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4:709–716CrossRefGoogle Scholar
  18. 18.
    Baldwin CL, Bigelow NW, Masiello DJ (2014) Thermal signatures of plasmonic Fano interferences: toward the achievement of nanolocalized temperature manipulation. J Phys Chem Lett 5:1347–1354CrossRefGoogle Scholar
  19. 19.
    Johnson PB, Christy R (1972) Optical constants of the noble metals. Phys Rev B 6:4370CrossRefGoogle Scholar
  20. 20.
    Nordlander P, Oubre C, Prodan E, Li K, Stockman MI (2004) Plasmon hybridization in nanoparticle dimers. Nano Lett 4:899–903CrossRefGoogle Scholar
  21. 21.
    Prodan E (2003) A hybridization model for the plasmon response of complex nanostructures. Science 302(5644):419–422CrossRefGoogle Scholar
  22. 22.
    Romo-Herrera JM, Alvarez-Puebla RA, Liz-Marz LM (2011) Controlled assembly of plasmonic colloidal nanoparticle clusters. Nanoscale 3:1304–1315CrossRefGoogle Scholar
  23. 23.
    Fan JA, Wu C, Bao K, Bao J, Bardhan R, Halas NJ, Manoharan VN, Nordlander P, Shvets G, Capasso F (2010) Self-assembled plasmonic nanoparticle clusters. Science 328:1135–1138CrossRefGoogle Scholar
  24. 24.
    Barrow SJ, Wei X, Baldauf JS, Funston AM, Mulvaney P (2012) The surface plasmon modes of self-assembled gold nanocrystals. Nat Commun 3:1275CrossRefGoogle Scholar
  25. 25.
    Baffou G, Rigneault HE (2011) Femtosecond-pulsed optical heating of gold nanoparticles. Phys Rev B 84:35415CrossRefGoogle Scholar
  26. 26.
    Baffou G, Berto P, Bermúdez Ureña E, Quidant R, Monneret S, Polleux J, Rigneault H (2013) Photoinduced heating of nanoparticle arrays. ACS Nano 7:6478–6488CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Zuwen Liu
    • 1
  • Qiang Li
    • 1
  • Weichun Zhang
    • 1
  • Yuanqing Yang
    • 1
  • Min Qiu
    • 1
    • 2
  1. 1.State Key Laboratory of Modern Optical Instrumentation, Department of Optical EngineeringZhejiang UniversityHangzhouChina
  2. 2.School of Information and Communication TechnologyRoyal Institute of TechnologyKistaSweden

Personalised recommendations