Advertisement

Plasmonics

, Volume 11, Issue 5, pp 1239–1246 | Cite as

Förster Resonance Energy Transfer Between Molecules in the Vicinity of Graphene-Coated Nanoparticles

  • Tingting Bian
  • Railing Chang
  • P. T. Leung
Article

Abstract

The recent demonstration of the plasmonic-enhanced Förster resonance energy transfer (FRET) between two molecules in the vicinity of planar graphene monolayers is further investigated using graphene-coated nanoparticles (GNP). Due to the flexibility of these nanostructures in terms of their geometric (size) and dielectric (e.g., core material) properties, greater tunability of the FRET enhancement can be achieved employing the localized surface plasmons. It is found that while the typical characteristic graphene plasmonic enhancements are manifested from using these GNPs, even higher enhancements can be possible via doping and manipulating the core materials. In addition, the broadband characteristics are further expanded by the closely spaced multipolar plasmon resonances of the GNPs.

Keywords

Graphene plasmonics Förster resonance energy transfer (FRET) 

Notes

Acknowledgments

This work was supported by Beijing Talent Fund (grant no. 2014000020124G061), as well as by the National Science Council of Taiwan through grant MOST 103-2112-M-019-003-MY3. PTL thanks Prof. Hai-Pang Chiang for his hosting during his visit to NTOU.

References

  1. 1.
    Förster T (1948) Ann Phys 437:55–75CrossRefGoogle Scholar
  2. 2.
    Förster T (1959) Discuss Faraday Soc 27:7–17CrossRefGoogle Scholar
  3. 3.
    Gersten JI, Nitzan A (1984) Chem Phys Lett 104:31–37CrossRefGoogle Scholar
  4. 4.
    Hua XM, Gersten JI, Nitzan A (1985) J Chem Phys 83:3650–3659CrossRefGoogle Scholar
  5. 5.
    Andrew P, Barnes WL (2000) Science 290:785CrossRefGoogle Scholar
  6. 6.
    Andrew P, Barnes WL (2004) Science 306:1002–1005CrossRefGoogle Scholar
  7. 7.
    Malicka J, Gryczynski I, Fang J, Kuśba J, Lakowicz JR (2003) Annal Biochem 315:160–169Google Scholar
  8. 8.
    Lakowicz JR, Kuśba J, Shen Y, Malicka J, D’Auria S, Gryczynski Z, Gryczynski I (2003) J Fluoresc 13:69–77Google Scholar
  9. 9.
    Zhang J, Fu Y, Lakowicz JR (2007) J Phys Chem C 111:50–56Google Scholar
  10. 10.
    Zhang J et al (2007) J Phys Chem C 111:11784–11792CrossRefGoogle Scholar
  11. 11.
    Gersten JI (2007) Plasmonics 2:65–77CrossRefGoogle Scholar
  12. 12.
    Xie HY, Chung HY, Leung PT, Tsai DP (2009) Phys Rev B 80:155448CrossRefGoogle Scholar
  13. 13.
    Chung HY, Leung PT, Tsai DP (2010) Plasmonics 5:363–368CrossRefGoogle Scholar
  14. 14.
    Chang R, Leung PT, Tsai DP (2014) Opt Express 22:27451–27461CrossRefGoogle Scholar
  15. 15.
    Marocico CA, Knoester J (2011) Phys Rev A 84:053824CrossRefGoogle Scholar
  16. 16.
    Gonzaga-Galeana JA, Zurita-Sanchez JR (2013) J Chem Phys 139:244302CrossRefGoogle Scholar
  17. 17.
    Xiong L, Shuhendler AJ, Rao J (2012) Nat Commun 3:1193CrossRefGoogle Scholar
  18. 18.
    Koppens FHL, Chang DE, Garcia de Abajo FJ (2011) Nano Lett 11:3370–3377CrossRefGoogle Scholar
  19. 19.
    Garcia de Abajo FJ (2014) ACS Photonics 1:135–152CrossRefGoogle Scholar
  20. 20.
    Velizhanin KA, Shahbazyan TV (2012) Phys Rev B 86:245432CrossRefGoogle Scholar
  21. 21.
    Biehs SA, Agarwal GS (2013) Appl Phys Lett 103:243112CrossRefGoogle Scholar
  22. 22.
    Xia F (2013) Nat Photonics 7:420CrossRefGoogle Scholar
  23. 23.
    Christensen T, Jauho A-P, Wubs M, Mortensen NA (2015) Phys Rev B 91:125414CrossRefGoogle Scholar
  24. 24.
    Falkovsky LA, Varlamov AA (2007) Eur Phys J B 56:281–284CrossRefGoogle Scholar
  25. 25.
    Lorenz L (1892) Videnskab Selskab Skrifter 6:1–62Google Scholar
  26. 26.
    Mie G (1908) Ann Phys 25:377–445CrossRefGoogle Scholar
  27. 27.
    Bohren CF, Hunt AJ (1977) Can J Phys 55:1930–1935CrossRefGoogle Scholar
  28. 28.
    Chung HY, Leung PT, Tsai DP (2013) J Chem Phys 138:224101CrossRefGoogle Scholar
  29. 29.
    Thongrattanasiri S, Manjavacas A, Garcia de Abajo FJ (2012) ACS Nano 6:1766–1775CrossRefGoogle Scholar
  30. 30.
    Durach M, Rusina A, Klimov VI, Stockman MI (2008) New J Phys 10:105011CrossRefGoogle Scholar
  31. 31.
    Hwang EH, Das Sarma S (2007) Phys Rev B 75:205418CrossRefGoogle Scholar
  32. 32.
    Mak KF, Ju L, Wang F, Heinz TF (2012) Solid State Commun 152:1341CrossRefGoogle Scholar
  33. 33.
    Veltri A, Aradian A (2012) Phys Rev B 85:115429CrossRefGoogle Scholar
  34. 34.
    Yang H, Hou Z, Zhou N, He B, Cao J, Kuang Y (2014) Ceram Int 40:13903CrossRefGoogle Scholar
  35. 35.
    Wang W, Klinaret JM (2013) Phys Rev B 87:195424CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Foundational Science, Institute of Applied ScienceBeijing Union UniversityBeijingChina
  2. 2.Institute of Optoelectronic SciencesNational Taiwan Ocean UniversityKeelungChina
  3. 3.Department of PhysicsPortland State UniversityPortlandUSA

Personalised recommendations