Plasmonics

, Volume 11, Issue 3, pp 865–874 | Cite as

Application of Generalized Mie Theory to EELS Calculations as a Tool for Optimization of Plasmonic Structures

  • Stefan Thomas
  • Christian Matyssek
  • Wolfram Hergert
  • Martin Arnold
  • Lars Kiewidt
  • Mirza Karamehmedović
  • Thomas Wriedt
Article

Abstract

Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method and use it to excite a system of plasmonic nanoparticles with an electron beam. This method is applied to EELS calculations of a gold dimer and compared to other methods. It is demonstrated that the GMM method is so efficient, that it can be used in the context of structural optimization by the application of genetic algorithms combined with a simplex algorithm. The scheme is applied to the design of plasmonic filters.

Keywords

Mie theory Optimization Electron energy loss spectroscopy 

References

  1. 1.
    García de Abajo FJ (2010) Rev Mod Phys 82(1):209. doi: 10.1103/RevModPhys.82.209 CrossRefGoogle Scholar
  2. 2.
    Coenen T, Vesseur EJR, Polman A, Koenderink AF (2011) Nano Lett 11 (9):3779. doi: 10.1021/nl201839g CrossRefGoogle Scholar
  3. 3.
    von Cube F, Irsen S, Niegemann J, Matyssek C, Hergert W, Busch K, Linden S (2011) Opt Mater Express 1(5):1009. doi: 10.1364/OME.1.001009 CrossRefGoogle Scholar
  4. 4.
    Coenen T, Vesseur EJR, Polman A (2012) ACS Nano 6(2):1742. doi: 10.1021/nn204750d CrossRefGoogle Scholar
  5. 5.
    Vesseur EJR, Aizpurua J, Coenen T, Reyes-Coronado A, Batson PE, Polman A (2012) MRS Bulletin 37(08):752. doi: 10.1557/mrs.2012.174 CrossRefGoogle Scholar
  6. 6.
    Mie G (1908) Annalen der Physik 330(3):377. doi: 10.1002/andp.19083300302 CrossRefGoogle Scholar
  7. 7.
    Taflove A, Hagness SC (2005) Computational electrodynamics: the finite-difference time-domain method, 3rd ed. Advanced Series in Applied Physics. Artech HouseGoogle Scholar
  8. 8.
    Waterman P (1965) Proc IEEE 53(8):805. doi: 10.1109/PROC.1965.4058 CrossRefGoogle Scholar
  9. 9.
    Doicu A, Wriedt T, Eremin YA (2006) Light scattering by systems of particles. Springer Series in Optical Sciences, vol 124. Springer, BerlinGoogle Scholar
  10. 10.
    Peterson B, Ström S (1973) Phys Rev D 8:3661. doi: 10.1103/PhysRevD.8.3661 CrossRefGoogle Scholar
  11. 11.
    Xu Yl (1995) Appl Opt 34(21):4573. doi: 10.1364/AO.34.004573 CrossRefGoogle Scholar
  12. 12.
    Xu Yl (1998) Applied Opt 37(27):6494. doi: 10.1364/AO.37.006494 CrossRefGoogle Scholar
  13. 13.
    Draine BT, Flatau PJ (1994) J Opt Soc Am A 11(4):1491. doi: 10.1364/JOSAA.11.001491 CrossRefGoogle Scholar
  14. 14.
    Hafner C (1990) The generalized multipole technique for computational electromagnetics. Artech House Books, BostonGoogle Scholar
  15. 15.
    García de Abajo FJ, Howie A (2002) Phys Rev B 65(11):115418. doi: 10.1103/PhysRevB.65.115418
  16. 16.
    Busch K, König M, Niegemann J (2011) Laser Photonics Rev 5(6):773. doi: 10.1002/lpor.201000045 CrossRefGoogle Scholar
  17. 17.
    Matyssek C, Niegemann J, Hergert W, Busch K (2011) Photonics Nanostruct Fundam Appl 9(4):367. doi: 10.1016/j.photonics.2011.04.003 CrossRefGoogle Scholar
  18. 18.
    Geuquet N, Henrard L (2010) Ultramicroscopy 110(8):1075. doi: 10.1016/j.ultramic.2010.01.013 CrossRefGoogle Scholar
  19. 19.
    Karamehmedović M, Schuh R, Schmidt V, Wriedt T, Matyssek C, Hergert W, Stalmashonak A, Seifert G, Stranik O (2011) Opt Express 19(9):8939. doi: 10.1364/OE.19.008939 CrossRefGoogle Scholar
  20. 20.
    Ross MB, Schatz GC (2015) J Phys D Appl Phys 48(18):184004. doi: 10.1088/0022-3727/48/18/184004 CrossRefGoogle Scholar
  21. 21.
    Ginzburg P, Berkovitch N, Nevet A, Shor I, Orenstein M (2011) Nano Lett 11(6):2329. doi: 10.1021/nl200612f CrossRefGoogle Scholar
  22. 22.
    Sukharev M, Seideman T (2006) J Chem Phys 124(14):144707. doi: 10.1063/1.2177651 CrossRefGoogle Scholar
  23. 23.
    Sukharev M, Seideman T (2006) Nano Lett 6(4):715. doi: 10.1021/nl0524896 CrossRefGoogle Scholar
  24. 24.
    Sukharev M, Seideman T (2007) J Phys B: At Mol Opt Phys 40(11):S283. doi: 10.1088/0953-4075/40/11/S04 CrossRefGoogle Scholar
  25. 25.
    Forestiere C, Pasquale AJ, Capretti A, Miano G, Tamburrino A, Lee SY, Reinhard BM, Dal Negro L (2012) Nano Lett 12(4):2037. doi: 10.1021/nl300140g CrossRefGoogle Scholar
  26. 26.
    Barber PW, Hill SC (1990) Light scattering by particles: computational methods. Advanced Series in Applied Physics, vol 2. World ScientificGoogle Scholar
  27. 27.
    Mackowski DW (1991) Proc R Soc A: Math Phys Eng Sci 433(1889):599. doi: 10.1098/rspa.1991.0066 CrossRefGoogle Scholar
  28. 28.
    Bohren CF, Huffman DR (2004) Absorption and scattering of light by small particles. Wiley-VCHGoogle Scholar
  29. 29.
    García de Abajo FJ (1999) Phys Rev B 59(4):3095. doi: 10.1103/PhysRevB.59.3095 CrossRefGoogle Scholar
  30. 30.
    Thomas S (2013) Symmetrieeigenschaften und Optimierung photonischer und plasmonischer Nanostrukturen, Master thesis, Martin-Luther-Universität, Halle, GermanyGoogle Scholar
  31. 31.
    Nelder JA, Mead R (1965) Comput J 7(4):308. doi: 10.1093/comjnl/7.4.308 CrossRefGoogle Scholar
  32. 32.
    Höflich K, Becker M, Leuchs G, Christiansen S (2012) Nanotechnology, vol 23, p 185303, DOI  10.1088/0957-4484/23/18/185303
  33. 33.
    Chu W, Gao X, Sorooshian S (2011) Inf Sci 181(22):4909. doi: 10.1016/j.ins.2011.06.024 CrossRefGoogle Scholar
  34. 34.
    Adcock S Genetic algorithm utility library, retrieved from http://gaul.sourceforge.net
  35. 35.
    Galassi M GNU Scientific Library Reference Manual. http://www.gnu.org/software/gsl/
  36. 36.
    Matyssek C, Schmidt V, Hergert W, Wriedt T (2012) Ultramicroscopy 117:46. doi: 10.1016/j.ultramic.2012.04.002
  37. 37.
    Huang F, Baumberg JJ (2010) Nano Lett 10(5):1787. doi: 10.1021/nl1004114 CrossRefGoogle Scholar
  38. 38.
    Vial A, Grimault AS, Macías D, Barchiesi D, de la Chapelle ML (2005) Phys Rev B 71(8):085416. doi: 10.1103/PhysRevB.71.085416 CrossRefGoogle Scholar
  39. 39.
    Etchegoin PG, Le Ru EC, Meyer M (2006) J Chem Phys 125(16):164705. doi: 10.1063/1.2360270 CrossRefGoogle Scholar
  40. 40.
    Matyssek CF (2012) Investigation of plasmonic structures by light and electron microscopy: contributions to an efficient numerical treatment. Dissertation, Martin-Luther-Universität Halle-WittenbergGoogle Scholar
  41. 41.
    Johnson PB, Christy RW (1972) Phys Rev B 6(12):4370. doi: 10.1103/PhysRevB.6.4370 CrossRefGoogle Scholar
  42. 42.
    Zeman EJ, Schatz GC (1987) J Phys Chem 91(3):634. doi: 10.1021/j100287a028 CrossRefGoogle Scholar
  43. 43.
    Berciaud S, Cognet L, Tamarat P, Lounis B (2005) Nano Lett 5 (3):515. doi: 10.1021/nl050062t
  44. 44.
    Grady N, Halas N, Nordlander P (2004) Chem Phys Lett 399(1-3):167. doi: 10.1016/j.cplett.2004.09.154 CrossRefGoogle Scholar
  45. 45.
    David C, de Abajo FJG (2011) J Phys Chem C 115(40):19470. doi: 10.1021/jp204261u CrossRefGoogle Scholar
  46. 46.
    de Abajo FJG (2008) J Phys Chem C 112(46):17983. doi: 10.1021/jp807345h CrossRefGoogle Scholar
  47. 47.
    Duan H, Fernández-Domínguez AI, Bosman M, Maier SA, Yang JKW (2012) Nano Lett 12 (3):1683. doi: 10.1021/nl3001309 CrossRefGoogle Scholar
  48. 48.
    Xu Yl, Khlebtsov NG (2003) J Quant Spectrosc Radiat Transf 79-80(0):1121. doi: 10.1016/S0022-4073(02)00345-X CrossRefGoogle Scholar
  49. 49.
    Yan B, Boriskina SV, Reinhard BM (2011) J Phys Chem C 115(11):4578. doi: 10.1021/jp112146d CrossRefGoogle Scholar
  50. 50.
    Zheng P, Cushing SK, Suri S, Wu N (2015) Phys Chem Chem Phys 17(33):21211. doi: 10.1039/c4cp05291a CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Stefan Thomas
    • 1
  • Christian Matyssek
    • 2
  • Wolfram Hergert
    • 3
  • Martin Arnold
    • 4
  • Lars Kiewidt
    • 5
  • Mirza Karamehmedović
    • 6
  • Thomas Wriedt
    • 7
  1. 1.Max Planck Institute of Microstructure PhysicsHalleGermany
  2. 2.Institute of PhysicsHumboldt University of BerlinBerlinGermany
  3. 3.Institute of PhysicsMartin Luther UniversityHalleGermany
  4. 4.Institute of MathematicsMartin Luther UniversityHalleGermany
  5. 5.Verfahrenstechnik der WertstoffrückgewinnungUniversity of BremenBremenGermany
  6. 6.Institut for FysikDanmarks Tekniske UniversitetKgs. LyngbyDenmark
  7. 7.IWT, Stiftung Institut für WerkstofftechnikBremenGermany

Personalised recommendations