Plasmonics

, Volume 11, Issue 3, pp 735–741 | Cite as

Guided Plasmon Modes of a Graphene-Coated Kerr Slab

  • Hodjat Hajian
  • Ivan D. Rukhlenko
  • P. T. Leung
  • Humeyra Caglayan
  • Ekmel Ozbay
Article

Abstract

We study analytically propagating surface plasmon modes of a Kerr slab sandwiched between two graphene layers. We show that some of the modes that propagate forward at low field intensities start propagating with negative slope of dispersion and positive flux of energy (fast-light surface plasmons) when the field intensity becomes high. We also discover that our structure supports an additional branch of low-intensity fast-light guided modes. The possibility of dynamically switching between the forward and the fast-light plasmon modes by changing the intensity of the excitation light or the chemical potential of the graphene layers opens up wide opportunities for controlling light with light and electrical signals on the nanoscale.

Keywords

Surface plasmons Plasmonics Kerr effect Nonlinear optics at surfaces 

References

  1. 1.
    Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666CrossRefGoogle Scholar
  2. 2.
    Bonaccorso F, Sun Z, Hasan T, Ferrari A C (2010) Graphene photonics and optoelectronics. Nat Photonics 4:611CrossRefGoogle Scholar
  3. 3.
    Grigorenko AN, Polini M, Novoselov KS (2012) Graphene plasmonics. Nat Photonics 6:749CrossRefGoogle Scholar
  4. 4.
    Rupasinghe C, Rukhlenko ID, Premaratne M (2014) Spaser made of graphene and carbon nanotubes. ACS Nano 8:2431– 2438CrossRefGoogle Scholar
  5. 5.
    Zhu W, Rukhlenko ID, Premaratne M (2013) Graphene metamaterial for optical reflection modulation. Appl Phys Lett 102 :241914CrossRefGoogle Scholar
  6. 6.
    Zhu W, Rukhlenko ID, Premaratne M (2013) Graphene-enabled tunability of optical fishnet metamaterial. Appl Phys Lett 102:121911CrossRefGoogle Scholar
  7. 7.
    Vakil A, Engheta N (2011) Transformation optics using graphene. Science 332:1291CrossRefGoogle Scholar
  8. 8.
    Udagedara I, Rukhlenko ID, Premaratne M (2011) Complex- ω approach versus comple-k approach in description of gain-assisted SPP propagation along linear chains of metallic nanospheres. Phys Rev B 83:115451CrossRefGoogle Scholar
  9. 9.
    Udagedara I, Rukhlenko ID, Premaratne M (2011) Surface plasmon-polariton propagation in piecewise linear chains of composite nanospheres: the role of optical gain and chain layout. Opt Express 19:19973CrossRefGoogle Scholar
  10. 10.
    Handapangoda D, Rukhlenko ID, Premaratne M (2013) Analytical study of optimal design and gain parameters of double-slot plasmonic waveguides. J Opt 15:035006CrossRefGoogle Scholar
  11. 11.
    Handapangoda D, Rukhlenko ID, Premaratne M (2012) Optimizing the design of planar heterostructures for plasmonic waveguiding. J Opt Soc Am B 29:553–558CrossRefGoogle Scholar
  12. 12.
    Handapangoda D, Premaratne M, Rukhlenko ID, Jagadish C (2011) Optimal design of composite nanowires for extended reach of surface plasmon-polaritons. Opt Express 19:16058CrossRefGoogle Scholar
  13. 13.
    Handapangoda D, Rukhlenko ID, Premaratne M, Jagadish C (2010) Optimization of gain-assisted waveguiding in metal-dielectric nanowires. Opt Lett 35:4190CrossRefGoogle Scholar
  14. 14.
    Hanson GW (2008) Quasi-transverse electromagnetic modes supported by a graphene parallel-plate waveguide. J Appl Phys 104:084314CrossRefGoogle Scholar
  15. 15.
    Hajian H, Soltani-Vala A, Kalafi M (2013) Optimizing terahertz surface plasmons of a monolayer graphene and a graphene parallel plate waveguide using one-dimensional photonic crystal. J Appl Phys 114:033102CrossRefGoogle Scholar
  16. 16.
    Smirnova DA, Gorbach AV, Iorsh IV, Shadrivov IV, Kivshar Yu-S (2013) Nonlinear switching with a graphene coupler. Phys Rev B 88:045443CrossRefGoogle Scholar
  17. 17.
    Liu M, Yin X, Zhang X (2012) Double-layer graphene optical modulator. Nano Lett 12:1482CrossRefGoogle Scholar
  18. 18.
    Koppens FHL, Chang DE, Garcia FJ (2011) de Abajo, Graphene plasmonics a platform for strong light–matter interactions. Nano Lett 11:3370CrossRefGoogle Scholar
  19. 19.
    Hendry E, Hale PJ, Moger J, Savchenko AK, Mikhailov SA (2010) Coherent nonlinear optical Response of graphene. Phys Rev Lett 105:097401CrossRefGoogle Scholar
  20. 20.
    Nesterov ML, Bravo-Abad J, Nikitin A-Yu, Garcia-Vidal FJ, Martin-Moreno L (2013) Graphene supports the propagation of subwavelength optical solitons. Laser Photonics Rev 7 :L7CrossRefGoogle Scholar
  21. 21.
    Huang JH, Chang R, Leung PT, Tsai DP (2009) Nonlinear dispersion relation for surface plasmon at a metal–Kerr medium interface. Opt Commun 282:1412CrossRefGoogle Scholar
  22. 22.
    Chen Q, Wang ZH (1993) Exact dispersion relations for TM waves guided by thin dielectric films bounded by nonlinear media. Opt Lett 18:260CrossRefGoogle Scholar
  23. 23.
    Davoyan AR, Shadrivov IV, Kivshar Yu-S (2008) Nonlinear plasmonic slot waveguides. Opt Express 16:21209CrossRefGoogle Scholar
  24. 24.
    Rukhlenko ID, Pannipitiya A, Premaratne M (2011) Dispersion relation for surface plasmon-polaritons in metal/nonlinear -dielectric/metal slot waveguides. Opt Lett 36:3374CrossRefGoogle Scholar
  25. 25.
    Rukhlenko ID, Pannipitiya A, Premaratne M, Agrawal GP (2011) Exact dispersion relation for nonlinear plasmonic waveguides. Phys Rev B 84:113409CrossRefGoogle Scholar
  26. 26.
    Wang L, Cai W, Zhang X, Xu J (2012) Surface plasmons at the interface between graphene and Kerr-type nonlinear media. Opt Lett 37:2730CrossRefGoogle Scholar
  27. 27.
    Hajian H, Soltani-Vala A, Kalafi M, Leung PT (2014) Surface plasmons of a graphene parallel plate waveguide bounded by Kerr-type nonlinear media. J Appl Phys 115:083104CrossRefGoogle Scholar
  28. 28.
    Falkovsky LA (2008) Optical properties of graphene. J Phys: Conf Series 129:012004Google Scholar
  29. 29.
    Davoyan A, Shadrivov IV, Bozhevolnyi SI, Kivshar YS (2010) Backward and forward modes guided by metal-dielectric-metal plasmonic waveguides. J Nanophoton 4:043509CrossRefGoogle Scholar
  30. 30.
    Feigenbaum E, Kaminski N, Orenstein M (2009) Negative dispersion: a backwar d wave or fast light? Nanoplasmonic examples. Opt Exp 17:18934CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Hodjat Hajian
    • 1
  • Ivan D. Rukhlenko
    • 2
    • 3
  • P. T. Leung
    • 4
  • Humeyra Caglayan
    • 1
    • 5
  • Ekmel Ozbay
    • 1
    • 6
    • 7
  1. 1.Nanotechnology Research CenterBilkent UniversityAnkaraTurkey
  2. 2.Modeling and Design of Nanostructures LaboratoryITMO UniversitySaint PetersburgRussia
  3. 3.Monash UniversityVictoriaAustralia
  4. 4.Department of PhysicsPortland State UniversityPortlandUSA
  5. 5.Department of Electrical and Electronics EngineeringAbdullah Gul UniversityKayseriTurkey
  6. 6.Department of PhysicsBilkent UniversityAnkaraTurkey
  7. 7.Department of Electrical and Electronics EngineeringBilkent UniversityAnkaraTurkey

Personalised recommendations