Advertisement

Plasmonics

, Volume 11, Issue 3, pp 713–719 | Cite as

Study of Broadband Tunable Properties of Surface Plasmon Resonances of Noble Metal Nanoparticles Using Mie Scattering Theory: Plasmonic Perovskite Interaction

Article

Abstract

We suggest semi-analytical approach to study the optical properties of noble metal nanoparticles and their interaction to the perovskite material (methyl ammonia lead halide: CH3NH3PbI3). Metal nanoparticles embedded in perovskite matrix exhibits broadband surface plasmon resonances, and the tunability of these plasmonic resonances is highly sensitive to particle size. The calculation of optical cross section have been done using Mie scattering theory which is applicable to arbitrary size and spherical-shape metal nanoparticles. We have taken five different radii ranging from 15 to 100 nm to understand the plasmonic resonances and its spectral width in the wavelength range 300 to 800 nm. Out of these noble metal nanoparticles, silver have highest scattering efficiency nearly of the order of 18 for the case of 15 nm radii at resonance wavelength 613 nm. Our finding reveals a new concept to understand the applications of plasmonic resonances in order to enhance the photon absorption inside the thin film of perovskite.

Keywords

Mie scattering Surface plasmon resonance Noble metal nanoparticle Plasmonic perovskite interaction 

Notes

Acknowledgments

This research is financially supported by MNRE India.

References

  1. 1.
    Green MA (2004) Sol Energy 76:3CrossRefGoogle Scholar
  2. 2.
    Polman A et al (2012) J Opt 14:024002CrossRefGoogle Scholar
  3. 3.
    Mokkapati S, Catchpole KR (2012) J Appl Phys 112:101101CrossRefGoogle Scholar
  4. 4.
    Ji Alok, Raziman TV, Butet J, Sharma RP, Martin OJF (2013) Opt Express 21:21500–21507Google Scholar
  5. 5.
    Pillai S, Catchpole KR, Trupke T, Green MA (2007) J Appl Phys 101:093105CrossRefGoogle Scholar
  6. 6.
    Atwater HA, Polman A (2010) Nat Mater 9:205CrossRefGoogle Scholar
  7. 7.
    Prasad PN (2012) Introduction to nanomedicine and nanobioengineering. WileyGoogle Scholar
  8. 8.
    Aslan K, Lakowicz JR, Geddes CD (2005) Curr Opin Chem Biol: Anal Tech 9:538–544CrossRefGoogle Scholar
  9. 9.
    Aslan K, Lakowicz JR, Geddes CD (2004) Anal Chim Acta 517:139–144CrossRefGoogle Scholar
  10. 10.
    Thouti E, Chander N, Dutta V, Komarala VK (2013) J Opt 15:035005CrossRefGoogle Scholar
  11. 11.
    Hutter E, Fendler JH (2004) Adv Mater 16:1685CrossRefGoogle Scholar
  12. 12.
    Catchpole KR, Polman A (2008) Opt Express 6:21793CrossRefGoogle Scholar
  13. 13.
    Pathak H, Ji Alok, Sharma Richa and Sharma RP (2015) Plasmonics. doi  10.1007/s11468-014-9865-2
  14. 14.
    Zhang Q, Large N, Nordlander P, Wang H (2014) J Phys Chem 5:370Google Scholar
  15. 15.
    N Felidj, J Grand, G Laurent, J.Aubard, G.Levi, A.Hohenau, N.Galler, F.R.Aussenegg, J.R.Krenn (2008) 128:094702Google Scholar
  16. 16.
    Pathak NK, Pandey GK, Ji Alok, Sharma RP (2015) Plasmonics. doi: 10.1007/s11468-015-9978-2
  17. 17.
    Pathak NK, Ji Alok, Sharma RP (2014) Appl Phys A 115:1445–1450Google Scholar
  18. 18.
    Chander N, Chandrasekhar PS, Komarala VK (2014) RSC Adv 4:55658–55665CrossRefGoogle Scholar
  19. 19.
    Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663CrossRefGoogle Scholar
  20. 20.
    Fabregat-Santiago F, Bisquert J, Cevey L, Chen P, Wang M, Zakeeruddin SM, Gratzel M (2009) J Am Chem Soc 131:558CrossRefGoogle Scholar
  21. 21.
    Cai N, Moon SJ, Cevey-Ha L, Moehl T, Humphry-Baker R, Wang P, Zakeeruddin SM, Gratzel M (2011) Nano Lett 11:1452CrossRefGoogle Scholar
  22. 22.
    Green MA, Baillie AH, Snaith HJ (2014) Nat Photonics 8(7):506CrossRefGoogle Scholar
  23. 23.
    Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P (2015) Nat Photonics 9:106CrossRefGoogle Scholar
  24. 24.
    Loper P, Stuckelberger M, Niesen B, Werner J, Filipic M, Moon S-J, Yum J-H, Topic M, De Wolf S, Ballif C (2015) J Phys Chem Lett 6:66–71CrossRefGoogle Scholar
  25. 25.
    Park NG (2013) J Phys Chem Lett 4:2423–2429CrossRefGoogle Scholar
  26. 26.
    Snaith HJ (2013) J Phys Chem Lett 4:3623–3630CrossRefGoogle Scholar
  27. 27.
    Service RF (2014) Science 344:458CrossRefGoogle Scholar
  28. 28.
    Zhou H, Chen Q, Li G, Luo S, Song TB, Duan HS, Hong Z, You J, Liu Y, Yang Y (2014) Science 345:542–546CrossRefGoogle Scholar
  29. 29.
    Shieh J, Chen SW, Fang CY, Chen CH (2014) Appl Phys Lett 104:073901CrossRefGoogle Scholar
  30. 30.
    Palik ED (ed) (1985) Handbook of optical constants of solids. Academic, OrlandoGoogle Scholar
  31. 31.
    Zhang W et al (2013) Nano Lett 13:4505–4510CrossRefGoogle Scholar
  32. 32.
    Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New YorkCrossRefGoogle Scholar
  33. 33.
    Piliarik M, Vasnicka PK, Galler N, Krenn JR, Homola J (2011) Opt Express 19:9213CrossRefGoogle Scholar
  34. 34.
    Noguez C (2007) J Phys Chem C 111:3806CrossRefGoogle Scholar
  35. 35.
    Kreibig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  36. 36.
    Pathak NK, Ji Alok, Sharma RP (2014) Plasmonics 9:651–657Google Scholar
  37. 37.
    Hohenau A, Drezet A, Weissenbacher M, Aussenegg FR, Krenn JR (2008) Phys Rev B 78:155405CrossRefGoogle Scholar
  38. 38.
    Derkacs D, Lim SH, Matheu P, Mar W, Yu ET (2006) Appl Phys Lett 89:093103CrossRefGoogle Scholar
  39. 39.
    Jackson JD (1999) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  40. 40.
    Green MA, Keevers MJ (1995) Prog Photovolt Res Appl 3:189CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Centre for Energy StudiesIndian Institute of TechnologyDelhiIndia

Personalised recommendations