Advertisement

Plasmonics

, Volume 11, Issue 2, pp 601–608 | Cite as

Plasmonic Enhancement by a Continuous Gold Underlayer: Application to SERS Sensing

  • Jean-François BrycheEmail author
  • Raymond Gillibert
  • Grégory Barbillon
  • Philippe Gogol
  • Julien Moreau
  • Marc Lamy de la Chapelle
  • Bernard Bartenlian
  • Michael Canva
Article

Abstract

In this paper, we report on an improved enhancement of the surface-enhanced Raman scattering (SERS) effect. Such improvement is obtained by using a continuous gold film (underlayer), which is added below an array of gold nanostructures. Two types of nanostructures were studied to validate our results: regular disk arrays with two diameters (110 and 210 nm) and lines with a width of 110 nm, all on a gold film of 30 nm thick. A supplementary gain of one order of magnitude on the SERS enhancement factor (EF) was experimentally demonstrated for several excitation wavelengths: 633, 660, and 785 nm. With such SERS substrates, EFs of 107 are observed for thiophenol detection. This opens the way towards routine and reliable detection of molecules at low concentration.

Keywords

Plasmonics SERS Biosensors Nanostructuration Localized surface plasmon resonance 

Notes

Acknowledgments

The authors acknowledge ANR P2N (ANR-12-NANO-0016) and the support of the French Government for partial funding of the project in which this work takes place. This work was partly supported by the French RENATECH network. IOGS/CNRS is also part of the European Network of Excellence in BioPhotonics, Photonics for Life, P4L.

Supplementary material

11468_2015_88_MOESM1_ESM.docx (83 kb)
Figure S1 (DOCX 83 kb)
11468_2015_88_MOESM2_ESM.docx (602 kb)
Figure S2 (DOCX 601 kb)
11468_2015_88_MOESM3_ESM.docx (83 kb)
Figure S3 (DOCX 83 kb)

References

  1. 1.
    Raman CV (1928) A new radiation. Indian J Phys 2:387–398Google Scholar
  2. 2.
    Fleischmann M, Hendra P, McQuillan A (1974) Raman spectra of pyridine adsorbed at a silver electrode. Chem Phys Lett 26(2):163–166. doi: 10.1016/0009-2614(74)85388-1 CrossRefGoogle Scholar
  3. 3.
    Le Ru EC, Etchegoin PG (2012) Single-molecule surface-enhanced Raman spectroscopy. Annu Rev Phys Chem 63(1):65–87. doi: 10.1146/annurev-physchem-032511-143757 CrossRefGoogle Scholar
  4. 4.
    Sharma B, Frontiera RR, Henry A-I, Ringe E, Van Duyne RP (2012) SERS: materials, applications, and the future. Materials Today 15(1–2):16–25. doi: 10.1016/S1369-7021(12)70017-2 CrossRefGoogle Scholar
  5. 5.
    Guillot N, de la Chapelle ML (2012) Lithographied nanostructures as nanosensors. NANOP 6 (1):064506-064501-064506-064528. doi: 10.1117/1.JNP.6.064506
  6. 6.
    Vo-Dinh T, Wang H-N, Scaffidi J (2010) Plasmonic nanoprobes for SERS biosensing and bioimaging. J Biophotonics 3(1–2):89–102. doi: 10.1002/jbio.200910015 Google Scholar
  7. 7.
    Tian ZQ, Ren B, Wu DY (2002) Surface-enhanced Raman scattering: from noble to transition metals and from rough surfaces to ordered nanostructures. J Phys Chem B 106(37):9463–9483. doi: 10.1021/jp0257449 CrossRefGoogle Scholar
  8. 8.
    Baia M, Baia L, Astilean S, Popp J (2006) Surface-enhanced Raman scattering efficiency of truncated tetrahedral Ag nanoparticle arrays mediated by electromagnetic couplings. Appl Phys Lett 88(14), 143121. doi: 10.1063/1.2193778 CrossRefGoogle Scholar
  9. 9.
    Yuan H, Fales AM, Khoury CG, Liu J, Vo-Dinh T (2013) Spectral characterization and intracellular detection of surface-enhanced Raman scattering (SERS)-encoded plasmonic gold nanostars. J Raman Spectrosc 44(2):234–239. doi: 10.1002/jrs.4172 CrossRefGoogle Scholar
  10. 10.
    Vo-Dinh T, Dhawan A, Norton SJ, Khoury CG, Wang H-N, Misra V, Gerhold MD (2010) Plasmonic nanoparticles and nanowires: design, fabrication and application in sensing. J Phys Chem C 114(16):7480–7488. doi: 10.1021/jp911355q CrossRefGoogle Scholar
  11. 11.
    Guillot N, de la Chapelle ML (2012) The electromagnetic effect in surface enhanced Raman scattering: enhancement optimization using precisely controlled nanostructures. J Quant Spectrosc Radiat Transf 113(18):2321–2333. doi: 10.1016/j.jqsrt.2012.04.025 CrossRefGoogle Scholar
  12. 12.
    Brown RJC, Milton MJT (2008) Nanostructures and nanostructured substrates for surface-enhanced Raman scattering (SERS). J Raman Spectrosc 39(10):1313–1326. doi: 10.1002/jrs.2030 CrossRefGoogle Scholar
  13. 13.
    Cialla D, Marz A, Bohme R, Theil F, Weber K, Schmitt M, Popp J (2012) Surface-enhanced Raman spectroscopy (SERS): progress and trends. Anal Bioanal Chem 403(1):27–54. doi: 10.1007/s00216-011-5631-x CrossRefGoogle Scholar
  14. 14.
    Fan M, Andrade GFS, Brolo AG (2011) A review on the fabrication of substrates for surface enhanced Raman spectroscopy and their applications in analytical chemistry. Anal Chim Acta 693(1–2):7–25. doi: 10.1016/j.aca.2011.03.002 CrossRefGoogle Scholar
  15. 15.
    Yu QM, Braswell S, Christin B, Xu JJ, Wallace PM, Gong H, Kaminsky D (2010) Surface-enhanced Raman scattering on gold quasi-3D nanostructure and 2D nanohole arrays. Nanotechnology 21(35):9. doi: 10.1088/0957-4484/21/35/355301 CrossRefGoogle Scholar
  16. 16.
    Yue WS, Yang Y, Wang ZH, Han JG, Syed A, Chen LQ, Wong K, Wang XB (2012) Improved surface-enhanced Raman scattering on arrays of gold quasi-3D nanoholes. J Phys D-Appl Phys 45(42):7. doi: 10.1088/0022-3727/45/42/425401 CrossRefGoogle Scholar
  17. 17.
    Yu Q, Guan P, Qin D, Golden G, Wallace PM (2008) Inverted size-dependence of surface-enhanced Raman scattering on gold nanohole and nanodisk arrays. Nano Lett 8(7):1923–1928. doi: 10.1021/nl0806163 CrossRefGoogle Scholar
  18. 18.
    Lin YY, Liao JD, Ju YH, Chang CW, Shiau AL (2011) Focused ion beam-fabricated Au micro/nanostructures used as a surface enhanced Raman scattering-active substrate for trace detection of molecules and influenza virus. Nanotechnology 22(18):8. doi: 10.1088/0957-4484/22/18/185308 CrossRefGoogle Scholar
  19. 19.
    Hamouda F, Sahaf H, Held S, Barbillon G, Gogol P, Moyen E, Aassime A, Moreau J, Canva M, Lourtioz JM, Hanbucken M, Bartenlian B (2011) Large area nanopatterning by combined anodic aluminum oxide and soft UV-NIL technologies for applications in biology. Microelectron Eng 88(8):2444–2446. doi: 10.1016/j.mee.2011.02.013 CrossRefGoogle Scholar
  20. 20.
    Lee SY, Jeon HC, Yang SM (2012) Unconventional methods for fabricating nanostructures toward high-fidelity sensors. J Mater Chem 22(13):5900–5913. doi: 10.1039/c2jm16568f CrossRefGoogle Scholar
  21. 21.
    Barbillon G, Hamouda F, Held S, Gogol P, Bartenlian B (2010) Gold nanoparticles by soft UV nanoimprint lithography coupled to a lift-off process for plasmonic sensing of antibodies. Microelectron Eng 87(5–8):1001–1004. doi: 10.1016/j.mee.2009.11.114 CrossRefGoogle Scholar
  22. 22.
    Masson J-F, Gibson KF, Provencher-Girard A (2010) Surface-enhanced Raman spectroscopy amplification with film over etched nanospheres. J Phys Chem C 114(51):22406–22412. doi: 10.1021/jp106450y CrossRefGoogle Scholar
  23. 23.
    Fang C, Frontiera RR, Tran R, Mathies RA (2009) Mapping GFP structure evolution during proton transfer with femtosecond Raman spectroscopy. Nature 462 (7270):200–204. doi: 10.1038/nature08527
  24. 24.
    Klingsporn JM, Sonntag MD, Seideman T, Van Duyne RP (2014) Tip-enhanced Raman spectroscopy with picosecond pulses. J Phys Chem Lett 5(1):106–110. doi: 10.1021/jz4024404 CrossRefGoogle Scholar
  25. 25.
    Barchiesi D, Kessentini S, Guillot N, de la Chapelle ML, Grosges T (2013) Localized surface plasmon resonance in arrays of nano-gold cylinders: inverse problem and propagation of uncertainties. Opt Express 21(2):2245–2262. doi: 10.1364/OE.21.002245 CrossRefGoogle Scholar
  26. 26.
    Caldwell JD, Glembocki O, Bezares FJ, Bassim ND, Rendell RW, Feygelson M, Ukaegbu M, Kasica R, Shirey L, Hosten C (2011) Plasmonic nanopillar arrays for large-area, high-enhancement surface-enhanced Raman scattering sensors. ACS Nano 5(5):4046–4055. doi: 10.1021/nn200636t CrossRefGoogle Scholar
  27. 27.
    Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Spectroscopy and nonlinear microscopy of gold nanoparticle arrays on gold films. Phys Rev B 75(8):085104. doi: 10.1103/PhysRevB.75.085104 CrossRefGoogle Scholar
  28. 28.
    Hohenau A, Krenn JR, Beermann J, Bozhevolnyi SI, Rodrigo SG, Martin-Moreno L, Garcia-Vidal F (2006) Spectroscopy and nonlinear microscopy of Au nanoparticle arrays: experiment and theory. Phys Rev B 73(15):155404. doi: 10.1103/PhysRevB.73.155404 CrossRefGoogle Scholar
  29. 29.
    Hohenau A, Krenn JR, Garcia-Vidal FJ, Rodrigo SG, Martin-Moreno L, Beermann J, Bozhevolnyi SI (2007) Comparison of finite-difference time-domain simulations and experiments on the optical properties of gold nanoparticle arrays on gold film. J Opt A Pure Appl Opt 9(9):S366. doi: 10.1088/1464-4258/9/9/S14
  30. 30.
    Aassime A, Hamouda F, Richardt I, Bayle F, Pillard V, Lecoeur P, Aubert P, Bouchier D (2013) Anti-charging process for electron beam observation and lithography. Microelectron Eng 110:320–323. doi: 10.1016/j.mee.2013.02.036 CrossRefGoogle Scholar
  31. 31.
    Wang Y, Abb M, Boden SA, Aizpurua J, de Groot CH, Muskens OL (2013) Ultrafast nonlinear control of progressively loaded, single plasmonic nanoantennas fabricated using helium ion milling. Nano Lett 13(11):5647–5653. doi: 10.1021/nl403316z CrossRefGoogle Scholar
  32. 32.
    Iriarte GF, Rodriguez-Madrid JG, Calle F (2012) Fabrication of sub-100 nm IDT SAW devices on insulating, semiconducting and conductive substrates. J Mater Process Technol 212(3):707–712. doi: 10.1016/j.jmatprotec.2011.08.007 CrossRefGoogle Scholar
  33. 33.
    Zhou Q, Liu Y, He Y, Zhang Z, Zhao Y (2010) The effect of underlayer thin films on the surface-enhanced Raman scattering response of Ag nanorod substrates. Appl Phys Lett 97(12), 121902. doi: 10.1063/1.3489973 CrossRefGoogle Scholar
  34. 34.
    Cottat M, Lidgi-Guigui N, Tijunelyte I, Barbillon G, Hamouda F, Gogol P, Aassime A, Lourtioz J-M, Bartenlian B, de la Chapelle M (2014) Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res Lett 9(1):623. doi: 10.1186/1556-276X-9-623 CrossRefGoogle Scholar
  35. 35.
    Chu Y, Banaee MG, Crozier KB (2010) Double-resonance plasmon substrates for surface-enhanced Raman scattering with enhancement at excitation and stokes frequencies. ACS Nano 4(5):2804–2810. doi: 10.1021/nn901826q CrossRefGoogle Scholar
  36. 36.
    Mandal P, Ramakrishna SA (2011) Dependence of surface enhanced Raman scattering on the plasmonic template periodicity. Opt Lett 36(18):3705–3707. doi: 10.1364/OL.36.003705 CrossRefGoogle Scholar
  37. 37.
    Mandal P, Nandi A, Ramakrishna SA (2012) Propagating surface plasmon resonances in two-dimensional patterned gold-grating templates and surface enhanced Raman scattering. J Appl Phys 112(4), 044314. doi: 10.1063/1.4748180 CrossRefGoogle Scholar
  38. 38.
    Willets KA, Van Duyne RP (2007) Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem 58:267–297. doi: 10.1146/annurev.physchem.58.032806.104607 CrossRefGoogle Scholar
  39. 39.
    Aroca R (2006) Surface enhanced vibrational spectroscopy, John Wiley & Sons, Chichester, Ltd. doi: 10.1002/9780470035641
  40. 40.
    Le Ru EC, Grand J, Félidj N, Aubard J, Lévi G, Hohenau A, Krenn JR, Blackie E, Etchegoin PG (2008) Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: polarization effects. J Phys Chem C 112(22):8117–8121. doi: 10.1021/jp802219c CrossRefGoogle Scholar
  41. 41.
    Sarkar M, Besbes M, Moreau J, Bryche J-F, Olivéro A, Barbillon G, Coutrot A-L, Bartenlian B, Canva M (2015) Hybrid plasmonic mode by resonant coupling of localized plasmons to propagating plasmons in a Kretschmann configuration. ACS Photonics 2(2):237–245. doi: 10.1021/ph500351b CrossRefGoogle Scholar
  42. 42.
    Chu Y, Crozier KB (2009) Experimental study of the interaction between localized and propagating surface plasmons. Opt Lett 34(3):244–246. doi: 10.1364/OL.34.000244 CrossRefGoogle Scholar
  43. 43.
    Live LS, Dhawan A, Gibson KF, Poirier-Richard H-P, Graham D, Canva M, Vo-Dinh T, Masson J-F (2012) Angle-dependent resonance of localized and propagating surface plasmons in microhole arrays for enhanced biosensing. Anal Bioanal Chem 404(10):2859–2868. doi: 10.1007/s00216-012-6195-0 CrossRefGoogle Scholar
  44. 44.
    Guillot N, Shen H, Fremaux B, Peron O, Rinnert E, Toury T, de la Chapelle ML (2010) Surface enhanced Raman scattering optimization of gold nanocylinder arrays: influence of the localized surface plasmon resonance and excitation wavelength. Appl Phys Lett 97(2), 023113. doi: 10.1063/1.3462068 CrossRefGoogle Scholar
  45. 45.
    Shen H, Guillot N, Rouxel J, Lamy de la Chapelle M, Toury T (2012) Optimized plasmonic nanostructures for improved sensing activities. Opt Express 20(19):21278–21290. doi: 10.1364/OE.20.021278 CrossRefGoogle Scholar
  46. 46.
    Bryche JF, Gillibert R, Barbillon G, Sarkar M, Coutrot AL, Hamouda F, Aassime A, Moreau J, de la Chapelle ML, Bartenlian B, Canva M (2015) Density effect of gold nanodisks on the SERS intensity for a highly sensitive detection of chemical molecules. J Mater Sci 50(20):6601–6607. doi: 10.1007/s10853-015-9203-x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Jean-François Bryche
    • 1
    • 2
    Email author
  • Raymond Gillibert
    • 2
    • 3
    • 4
  • Grégory Barbillon
    • 1
  • Philippe Gogol
    • 1
  • Julien Moreau
    • 2
  • Marc Lamy de la Chapelle
    • 3
  • Bernard Bartenlian
    • 1
  • Michael Canva
    • 2
    • 5
  1. 1.Institut d’Électronique Fondamentale, CNRS, Univ Paris SudUniversité Paris-SaclayOrsay CedexFrance
  2. 2.Laboratoire Charles Fabry, CNRS, Institut d’Optique Graduate SchoolUniversité Paris-SaclayPalaiseau CedexFrance
  3. 3.Laboratoire CSPBATUniversité de Paris 13, Sorbonne Paris Cité, CNRSBobignyFrance
  4. 4.HORIBA Jobin YvonPalaiseauFrance
  5. 5.Laboratoire Nanotechnologie Nanosystème, LN2 UMI CNRS 3463, 3ITUniversité de SherbrookeSherbrookeCanada

Personalised recommendations