, Volume 11, Issue 1, pp 241–246 | Cite as

The Formation of Sodium Nanoparticles in Alkali-Silicate Glass Under the Action of the Electron Beam and Thermal Treatments

  • E.S. Bochkareva
  • N.V. Nikonorov
  • O.A. Podsvirov
  • M.A. Prosnikov
  • A.I. Sidorov


It is shown experimentally that the processing of the sodium-containing silicate glasses with the electron beam with electron energy 35 keV and dozes 20–65 mC/cm2 and the subsequent thermal treatment above the glass transition temperature result in the formation of the metallic sodium nanoparticles under the glass surface that manifest themselves in the plasmon resonance absorption band in the 405–410 nm spectral region. The main mechanisms of this effect are the field migration of the positive sodium ions into the negatively charged region under the glass surface, produced by the thermalized electrons, reduction of sodium ions by the thermalized electrons, and the nanoparticles growth as a result of thermal diffusion of the sodium atoms during the thermal treatment. The computer simulations in the dipole quasi-static approximation have shown that the most realistic model of the nanoparticle structure is the solid or liquid sodium core with two shells—the inner shell consisting of sodium oxide and the external one being vacuum or gas.


Sodium nanoparticle Sodium-silicate glass Electron beam Plasmon resonance Dipole quasi-static approximation 

PACS 81.16rf 78.67.Hc 61.80.Fe 



This work was financially supported by Ministry of Education and Science during the scientific-research work in the frame of the project part of State task in the scientific work area for the task # 11.1227.2014/K.


  1. 1.
    Zayats AV, Smolyaninov II, Maradudin AA (2005) Nano-optics of surface plasmon polaritons. Phys Rep 408:131–314. doi: 10.1016/j.physrep.2004.11.001 CrossRefGoogle Scholar
  2. 2.
    Chakraborty P (1998) Metal nanoclusters in glasses as non-linear photonic materials. J Mater Sci 33:2235–2249CrossRefGoogle Scholar
  3. 3.
    Hamanaka Y, Nakamura A, Omi S, Del Fatti N, Vallee F, Flytzanis C (1999) Ultrafast response of nonlinear refractive index of silver nanocrystals embedded in glass. Appl Phys Lett 75:1712–1714CrossRefGoogle Scholar
  4. 4.
    Dotsenko AV, Glebov LB, Tsekhomsky VA (1998) Physics and chemistry of photochromic glasses. CRC Press LLC, U.S.AGoogle Scholar
  5. 5.
    Panysheva EI, Tunimanova IV, Tsekhomsky VA (1990) A study of coloring in polychromatic glasses. Glass Phys Chem 16:239–244Google Scholar
  6. 6.
    Nikonorov NV, Panisheva EI, Tunimanova IV, Chucharev AV (2001) Influence of glass composition on the refractive index change upon photothermoinduced crystallization. Glass Phys Chem 27:241–249CrossRefGoogle Scholar
  7. 7.
    Nikonorov NV, Sidorov AI, Tsekhomskii VA (2010) Silver nanoparticles in oxide glasses: technologies and properties. In Silver Nanoparticles. Ed. by D.P. Perez. InTech. Croatia 10:177–200. doi: 10.5772/8506 Google Scholar
  8. 8.
    Kriebig U, Vollmer M (1995) Optical properties of metal clusters. Springer, BerlinCrossRefGoogle Scholar
  9. 9.
    Kolobkova EV, Nikonorov NV (2015) Metal sodium nanoparticles in fluorophosphate glasses. Alloys Comp 637:545–551CrossRefGoogle Scholar
  10. 10.
    Nikonorov NV, Sidorov AI, Tsekhomsky VA, Nashchekin AV, Usov OA, Podsvirov OA, Poplevkin SV (2009) Electron-beam modification of the near-surface layers of photosensitive glasses. Techn Phys Lett 35:309–311CrossRefGoogle Scholar
  11. 11.
    Vostokov AV, Ignatiev AI, Nikonorov NV, Podsvirov OA, Sidorov AI, Nashchekin AV, Sokolov RV, Usov OA, Tsekhomsky VA (2009) Effect of electron irradiation on the formation of silver nanoclusters in photothermorefractive glasses. Techn Phys Lett 35:812–814CrossRefGoogle Scholar
  12. 12.
    Nashchekin AV, Usov OA, Sidorov AI, Podsvirov OA, Kurbatova NV, Tsekhomsky VA, Vostokov AV (2009) SPR of Ag nanoparticles in a photothermochromic glasses. Proc SPIE 7394:73942J-1-6. doi: 10.1117/12.825988 Google Scholar
  13. 13.
    Podsvirov OA, Ignatiev AI, Nashchekin AV, Nikonorov NV, Sidorov AI, Tsekhomskii VA, Usov OA, Vostokov AV (2010) Modification of Ag containing photo-thermo-refractive glasses induced by electron-beam irradiation. Nucl Instr Meth in Phys Res B 268:3103–3106CrossRefGoogle Scholar
  14. 14.
    Podsvirov OA, Sidorov AI, Tsekhomskii VA, Vostokov AV (2010) Formation of copper nanocrystals in photochromic glasses under electron irradiation and heat treatment. Phys Sol St 52:1906–1909CrossRefGoogle Scholar
  15. 15.
    Ignat’ev AI, Nashchekin AV, Nevedomskii VM, Podsvirov OA, Sidorov AI, Solov’ev AP, Usov OA (2011) Formation of silver nanoparticles in photothermorefractive glasses during electron irradiation. Techn Phys 56:662–667CrossRefGoogle Scholar
  16. 16.
    Brunov VS, Podsvirov OA, Sidorov AI, Churaev DV (2014) Formation of silver thin films and nanoparticles inside and on the surface of silver-containing glasses by electron irradiation. Techn Phys 59:1215–1219CrossRefGoogle Scholar
  17. 17.
    Nashchekin AV, Nevedomsky VN, Usov OA, Podsvirov OA, Sidorov AI (2011) Self-assembling of silver nanoparticles in glasses under electron beam irradiation. Int J of Nanosci 10:1265–1268CrossRefGoogle Scholar
  18. 18.
    Brunov VS, Podsvirov OA, Sidorov AI, Prosnikov MA (2014) Dissolution of a silver film in silicon glasses under electron bombardment. Techn Phys 59:1863–1868CrossRefGoogle Scholar
  19. 19.
    Podsvirov OA, Sidorov AI, Churaev DV (2014) Specific features of the formation of optical waveguides in silicate glass at high energy and doze of electron irradiation. Techn Phys 59:1674–1678CrossRefGoogle Scholar
  20. 20.
    Carslaw HS, Jaeger JC (1959) Conduction of heat in solids. Clarendon Press, OxfordGoogle Scholar
  21. 21.
    Tervonen A, Honkanen S, Leppihalme MJ (1987) Control of ion-exchanged waveguide profiles with Ag thin-film sources. Appl Phys 62:759–763CrossRefGoogle Scholar
  22. 22.
    Touzin M, Goeriot D, Guerret-Piecort C, Juve D, Treheux D, Fitting H-J (2006) Electron beam charging of insulators: a self-consistent flight-drift model. J Appl Phys 99:114110-1-14CrossRefGoogle Scholar
  23. 23.
    Inagaki T, Arakawa ET, Birkhoff RD, Williams MW (1976) Optical properties of liquid Na between 0.6 and 3.8 eV. Phys Rev B 13:5610–5612CrossRefGoogle Scholar
  24. 24.
    Schulz LG (1954) The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k. JOSA 44:357–362CrossRefGoogle Scholar
  25. 25.
    Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic press, San Diego, USAGoogle Scholar
  26. 26.
    Bohren CF, Huffman DR (1983) Absorption and scattering of light by small particles. John Wiley & Sons, New YorkGoogle Scholar
  27. 27.
    Yaws CL (1999) Chemical properties handbook. McGraw-Hill Education, New YorkGoogle Scholar
  28. 28.
    Haus JW, Zhou HS, Takami S, Hirasawa M, Honma I, Komiyama H (1993) Enhanced optical properties of metal‐coated nanoparticles. J Appl Phys 73:1043–1048CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • E.S. Bochkareva
    • 1
  • N.V. Nikonorov
    • 1
  • O.A. Podsvirov
    • 2
  • M.A. Prosnikov
    • 3
  • A.I. Sidorov
    • 1
  1. 1.ITMO UniversitySt. PetersburgRussian Federation
  2. 2.St. Petersburg Polytechnical UniversitySt. PetersburgRussian Federation
  3. 3.Ioffe Physical-Technical InstituteRussian Academy of SciencesSt. PetersburgRussian Federation

Personalised recommendations