, Volume 11, Issue 1, pp 345–350 | Cite as

Light-Induced Heating of Gold Nanoparticles in Colloidal Solution: Dependence on Detuning from Surface Plasmon Resonance

  • Oleg A. Yeshchenko
  • Nataliya V. Kutsevol
  • Antonina P. Naumenko


The absorption of light by gold nanoparticles in colloidal water solution has been studied at the simultaneous illumination of nanoparticles by the continuous wave laser beam in dependence on the detuning of laser frequency from the surface plasmon resonance. The appreciable blue shift, broadening, and increase of intensity of the plasmonic absorption band have been observed at approaching of the laser frequency to surface plasmon resonance in Au nanoparticles. The plasmon band broadening reveals the heating of gold nanoparticles that has an evident resonant character. The strong increase of nanoparticle temperature of 316 K has been obtained at moderate laser intensity of 5 × 103 W/cm2 and detuning of 28.5 nm. The sharp blue shift of plasmon band was observed when the temperature exceeded the water boiling point. Such effect is probably due to formation of the vapor bubbles around the Au nanoparticles occurring at water boiling.


Gold nanoparticles Surface plasmon resonance Light-induced heating Vapor generation 



O. A. Yeshchenko acknowledges the partial support by the State Agency on Science, Innovations and Informatization of Ukraine (grant # M/325-2013).


  1. 1.
    Ozbay E (2006) Plasmonics: merging photonics and electronics at nanoscale dimensions. Science 311:189–193CrossRefGoogle Scholar
  2. 2.
    Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature 424:824–830CrossRefGoogle Scholar
  3. 3.
    Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19:22029–22106CrossRefGoogle Scholar
  4. 4.
    Challener WA, Peng C, Itagi AV, Karns D, Peng W, Peng Y, Yang XM, Zhu X, Gokemeijer NJ, Hsia Y-T, Ju G, Rottmayer RE, Seigler MA, Gage EC (2009) Heat-assisted magnetic recording by a near-field transducer with efficient optical energy transfer. Nat Photon 3:220–224CrossRefGoogle Scholar
  5. 5.
    O’Neal D, Hirsch L, Halas N, Payne J, West J (2004) Photo-thermal tumor ablation in mice using near infrared-absorbing nanoparticles. Cancer Lett 209:171–176CrossRefGoogle Scholar
  6. 6.
    Lowery A, Gobin A, Day E, Halas N, West J (2006) Immunonanoshells for targeted photothermal ablation of tumor cells. Int J Nanomed 1:149–154CrossRefGoogle Scholar
  7. 7.
    Cao L, Barsic DN, Guichard AR, Brongersma ML (2007) Plasmon-assisted local temperature control to pattern individual semiconductor nanowires and carbon nanotubes. Nano Lett 7:3523–3527CrossRefGoogle Scholar
  8. 8.
    Cai W, White JS, Brongersma ML (2009) Compact, high-speed and power-efficient electrooptic plasmonic modulators. Nano Lett 9:4403–4411CrossRefGoogle Scholar
  9. 9.
    Govorov AO, Zhang W, Skeini T, Richardson H, Lee J, Kotov NA (2006) Gold nanoparticle ensembles as heaters and actuators: melting and collective plasmon resonances. Nanoscale Res Lett 1:84–90CrossRefGoogle Scholar
  10. 10.
    Govorov AO, Richardson HH (2007) Generating heat with metal nanoparticles. Nano Today 2:30–38CrossRefGoogle Scholar
  11. 11.
    Brongersma ML, Halas NJ, Nordlander P (2015) Nat Nanotechnol 10:25CrossRefGoogle Scholar
  12. 12.
    Baffou G, Quidant R (2013) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev 7:171–187CrossRefGoogle Scholar
  13. 13.
    Fang Z, Zhen YR, Neumann O, Polman A, de Abajo FJ G, Nordlander P, Halas NJ (2013) Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Lett 13:1736–1742CrossRefGoogle Scholar
  14. 14.
    Choudhuri B, Mondal A, Dhar JC, Singh NK, Goswami T, Chattopadhyay KK (2013) Enhanced photocurrent from generated photothermal heat in indium nanoparticles embedded TiO2 film. Appl Phys Lett 102:233108CrossRefGoogle Scholar
  15. 15.
    Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213CrossRefGoogle Scholar
  16. 16.
    Erickson D, Sinton D, Psaltis D (2011) Optofluidics for energy applications. Nat Photonics 5:583–590CrossRefGoogle Scholar
  17. 17.
    Schuller JA, Taubner T, Brongersma ML (2009) Optical antenna thermal emitters. Nat Photonics 3:658–661CrossRefGoogle Scholar
  18. 18.
    Adleman JR, Boyd DA, Goodwin DG, Psaltis D (2009) Heterogenous catalysis mediated by plasmon heating. Nano Lett 9:4417–4423CrossRefGoogle Scholar
  19. 19.
    Christopher P, Xin HL, Linic S (2011) Visible-light-enhanced catalytic oxidation reactions on plasmonic silver nanostructures. Nat Chem 3:467–472Google Scholar
  20. 20.
    Ibrahimkutty S, Kim J, Cammarata M, Ewald F, Choi J, Ihee H, Plech A (2011) Ultrafast structural dynamics of the photocleavage of protein hybrid nanoparticles. ACS Nano 5:3788–3794CrossRefGoogle Scholar
  21. 21.
    Lee J, Govorov AO, Kotov NA (2005) Nanoparticle assemblies with molecular springs: a nanoscale thermometer. Angew Chem Int Ed 44:7439–7442CrossRefGoogle Scholar
  22. 22.
    Lim ZZJ, Li JEJ, Ng CT, Yung LYL, Bay BH (2011) Gold nanoparticles in cancer therapy. Acta Pharmacol Sin 32:983–990CrossRefGoogle Scholar
  23. 23.
    von Maltzahn G, Park J-H, Lin KY, Singh N, Schwöppe C, Mesters R, Berdel WE, Ruoslahti E, Sailor MJ, Bhatia SN (2011) Nanoparticles that communicate in vivo to amplify tumour targeting. Nat Mater 10:545–552CrossRefGoogle Scholar
  24. 24.
    Boyd DA, Greengard L, Brongersma L, El-Naggar MY, Goodwin DG (2006) Plasmon-assisted chemical vapor deposition. Nano Lett 6:2592–2597CrossRefGoogle Scholar
  25. 25.
    Li C, Wang Z, Wang PI, Peles Y, Koratkar N, Peterson GP (2008) Nanostructured copper interfaces for enhanced boiling. Small 4:1084–1088CrossRefGoogle Scholar
  26. 26.
    Richardson HH, Carlson MT, Tandler PJ, Hernandez P, Govorov AO (2009) Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. Nano Lett 9:1139–1146CrossRefGoogle Scholar
  27. 27.
    Richardson HH, Hickman ZN, Govorov AO, Thomas AC, Zhang W, Kordesch ME (2006) Thermooptical properties of gold nanoparticles embedded in ice: characterization of heat generation and melting. Nano Lett 6:783–788Google Scholar
  28. 28.
    Carlson MT, Green AJ, Richardson HH (2012) Superheating water by CW excitation of gold nanodots. Nano Lett 12:1534–1537CrossRefGoogle Scholar
  29. 29.
    Lukianova-Hleb E, Hu Y, Latterini L, Tarpani L, Lee S, Drezek RA, Hafner JH, Lapotko DO (2010) Plasmonic nanobubbles as transient vapor nanobubbles generated around plasmonic nanoparticles. ACS Nano 4:2109–2123CrossRefGoogle Scholar
  30. 30.
    Kreibig U (1974) Electronic properties of small silver particles: the optical constants and their temperature dependence. J Phys F 4:999–1014CrossRefGoogle Scholar
  31. 31.
    Doremus RH (1965) Optical properties of small silver particles. J Chem Phys 42:414–417CrossRefGoogle Scholar
  32. 32.
    Mulvaney P (2001) Metal nanoparticles: double layers, optical properties, and electrochemistry. In: Klabunde J (ed) Nanoscale materials in chemistry. Wiley, New York, pp 121–168CrossRefGoogle Scholar
  33. 33.
    Yeshchenko OA, Bondarchuk IS, Gurin VS, Dmitruk IM, Kotko AV (2013) Temperature dependence of the surface plasmon resonance in gold nanoparticles. Surf Sci 608:275–281CrossRefGoogle Scholar
  34. 34.
    Yeshchenko OA, Bondarchuk IS, Alexeenko AA, Kotko AV (2013) Temperature dependence of the surface plasmon resonance in silver nanoparticles. Funct Mat 20:357–365CrossRefGoogle Scholar
  35. 35.
    Yeshchenko OA (2013) Temperature effects on the surface plasmon resonance in copper nanoparticles. Ukr J Phys 58:249–259CrossRefGoogle Scholar
  36. 36.
    Bouillard J-SG, Dickson W, O’Connor DP, Wurtz GA, Zayats AV (2012) Low-temperature plasmonics of metallic nanostructures. Nano Lett 12:1561–1565CrossRefGoogle Scholar
  37. 37.
    Kutsevol N, Bezugla T, Bezuglyi M, Rawiso M (2012) Star-like dextran-graft-(polyacrylamide-copolyacrylic acid) copolymers. Macromol Symp 82:317–318Google Scholar
  38. 38.
    Chumachenko V, Kutsevol N, Rawiso M, Schmutz M, Blanck C (2014) In situ formation of silver nanoparticles in linear and branched polyelectrolyte matrices using various reducing agents. Nanoscale Res Lett 9:164CrossRefGoogle Scholar
  39. 39.
    Chen Y-J, Lee M-C, Wang C-M (2014) Dielectric function dependence on temperature for Au and Ag. Japan J Appl Phys 53: 08MG02Google Scholar
  40. 40.
    Thormählen I, Straub J, Grigull U (1985) Refractive index of water and its dependence on wavelength, temperature, and density. J Phys Chem Ref Data 14:933–945CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Oleg A. Yeshchenko
    • 1
  • Nataliya V. Kutsevol
    • 2
  • Antonina P. Naumenko
    • 1
  1. 1.Physics DepartmentTaras Shevchenko National University of KyivKyivUkraine
  2. 2.Chemistry DepartmentTaras Shevchenko National University of KyivKyivUkraine

Personalised recommendations